Skip to main content

EduAction: A College Student Action Dataset for Classroom Attention Estimation

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Abstract

With the development of the action recognition technique, it is possible to automatically analyze the college students’ attention status through the recognition of their behavior in the classroom, which is of great significance to the evaluation of teaching quality in class. In the consideration that the college student behavior dataset is scarce, we set up a novel college students’ action dataset in the classroom for attention estimation in this paper, named as EduAction dataset. The EduAction dataset consists of 7 types of actions and 718 action clips, collected in the real college classroom environment. Furthermore, an improved two-stream ConvNet is conducted on this dataset with the 5-fold cross-validation for the performance evaluation. The results of our benchmark model achieve an overall accuracy of 83.01%. This spontaneous dataset will be a great aid for the teaching quality analysis in the learning environment.

K. Liu and B. Chen—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monkaresi, H., et al.: Automated detection of engagement using videobased estimation of facial expressions and heart rate. IEEE Trans. Affect. Comput. 8(1), 15–28 (2016)

    Google Scholar 

  2. Xu, X., Teng, X.: Classroom attention analysis based on multiple euler angles constraint and head pose estimation. In: Ro, Y.M., et al. (eds.) MultiMedia Modeling. Lecture Notes in Computer Science, vol. 11961, pp. 329–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37731-1_27

    Chapter  Google Scholar 

  3. Chen, L., Yang, H., Liu, K.: Classroom attention estimation method based on mining facial landmarks of students. In: Þór Jónsson, B., et al. (eds.) MultiMedia Modeling. Lecture Notes in Computer Science, vol. 13142, pp. 255–266. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98355-0_22

    Chapter  Google Scholar 

  4. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  5. Laptev, I., et al.: Learning realistic human actions from movies. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  6. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  7. Kim, M., Kim, T., Kim, D.: Spatio-temporal slowfast self-attention network for action recognition. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 2206–2210. IEEE (2020)

    Google Scholar 

  8. Wu, W., Yu, J.: An improved bilinear pooling method for imagebased action recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8578–8583. IEEE (2021)

    Google Scholar 

  9. Kuehne, H., et al.: HMDB: a large video database for human motion recognition. In: International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  10. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions classes from videos in the wild. In: arXiv preprint arXiv:1212.0402 (2012)

  11. Kuehne, H., Arslan, A., Serre, T.: The language of actions: recovering the syntax and semantics of goal-directed human activities. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 780–787 (2014)

    Google Scholar 

  12. Damen, D., et al.: Scaling egocentric vision: the epic-kitchens dataset. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, vol. 11208, pp. 720–736. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_44

  13. Karpathy, A., et al.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)

    Google Scholar 

  14. Rodriguez, M.D., Ahmed, J., Shah, M.: Action mach a spatio-temporal maximum average correlation height filter for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  15. Li, X., et al.: A students’ action recognition database in smart classroom. In: 2019 14th International Conference on Computer Science & Education (ICCSE), pp. 523–527. IEEE (2019)

    Google Scholar 

  16. Sharma, V., et al.: EduNet: a new video dataset for understanding human activity in the classroom environment. Sensors 21(17), 5699 (2021)

    Google Scholar 

  17. Zach, C., Pock, T., Bischof, H.:  A Duality Based Approach for Realtime TV-L1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol.  4713, pp. 214–223. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

  18. Szegedy, C., et al.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  20. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    Google Scholar 

  21. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 61772023), National Key Research and Development Program of China (No. 2019QY1803), and Fujian Science and Technology Plan Industry-University-Research Cooperation Project (No.2021H6015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, K. et al. (2023). EduAction: A College Student Action Dataset for Classroom Attention Estimation. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science(), vol 14089. Springer, Singapore. https://doi.org/10.1007/978-981-99-4752-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4752-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4751-5

  • Online ISBN: 978-981-99-4752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics