Abstract
Accurately predicting electricity demand is crucial for optimizing power resource allocation, improving the safety and economic performance of power grid operations, and providing significant economic and social benefits. To address this challenge, we propose a hybrid model that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks for predicting electricity demand across different industries in urban areas. The proposed model leverages the LSTM component to capture the temporal patterns of the time series data and the CNN component to extract spatial features of electricity demand across different areas. We evaluate our model on a diverse dataset of electricity demand from multiple city areas and industries. The experimental results demonstrate that our proposed model outperforms state-of-the-art methods, resulting in significant improvements in the accuracy of electricity demand prediction. Overall, our proposed hybrid model provides a valuable framework for accurately predicting electricity demand and has practical implications for power grid operations and management in urban areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time series analysis: forecasting and control. Wiley, Hoboken (2015)
Vähäkyla, P., Hakonen, E., Léman, P.: Short-term forecasting of grid load using Box-Jenkins techniques. Int. J. Electr. Power Energy Syst. 2(1), 29–34 (1980)
Christiaanse, W.: Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. 2, 900–911 (1971)
Taylor, J.W.: Short-term electricity demand forecasting using double seasonal exponential smoothing. J. Oper. Res. Soc. 54(8), 799–805 (2003)
Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to short-term system load forecasting. IEEE Trans. Power Syst. 5(4), 1535–1547 (1990)
Amjady, N.: Short-term hourly load forecasting using time-series modeling with peak load estimation capability. IEEE Trans. Power Syst. 16(3), 498–505 (2001)
Feinberg, E.A., Genethliou, D.: Load forecasting. In: Chow, J.H., Wu, F.F., Momoh, J. (eds.) Applied Mathematics for Restructured Electric Power Systems, pp. 269–285. Springer, Boston (2005). https://doi.org/10.1007/0-387-23471-3_12
Acknowledgements
This work is supported by the Research Funds from State Grid Shannxi (SGSNYX00SCJS2310024); Major Program of Xiamen (3502Z20231006); National Natural Science Foundation of China (62176227, U2066213); Fundamental Research Funds for the Central (20720210047).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, H. et al. (2023). Hybrid CNN-LSTM Model for Multi-industry Electricity Demand Prediction. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science(), vol 14090. Springer, Singapore. https://doi.org/10.1007/978-981-99-4761-4_61
Download citation
DOI: https://doi.org/10.1007/978-981-99-4761-4_61
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-4760-7
Online ISBN: 978-981-99-4761-4
eBook Packages: Computer ScienceComputer Science (R0)