Abstract
Object detection is the most fundamental and important research in computer vision to discriminate the location and class of the object in the image. This technology has been continuously researched for the past few years. Recently, with the development of hardware such as GPU computing power and cameras, object detection technology is gradually improving. However, there are many difficulties in utilizing GPUs on low-cost devices such as drones. Therefore, efficient deep learning technology that can operate on low-cost devices is needed. In this paper, we propose a deep learning model to enable real-time object detection on a low-cost device. We experiment to reduce the amount of computation and improve speed by modifying the CSP Bottleneck and SPPF parts corresponding to the backbone of YOLOv5. The model has been trained on MS COCO and VisDrone datasets, and the mAP values are measured at 0.364 mAP and 0.19 mAP, which are about 0.07 and 0.04 higher than Refinedetlite and Refinedet, respectively. The speed is 23.010 frames per second on the CPU configuration, which is enough for real-time object detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
An, J., Putro, M.D., Jo, K.H.: Efficient residual bottleneck for object detection on CPU. In: 2022 International Workshop on Intelligent Systems (IWIS), pp. 1–4. IEEE (2022)
Bera, B., Das, A.K., Garg, S., Piran, M.J., Hossain, M.S.: Access control protocol for battlefield surveillance in drone-assisted IoT environment. IEEE Internet Things J. 9(4), 2708–2721 (2021)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. CoRR abs/1712.00726 (2017). arXiv:1712.00726
Cai, Z., Vasconcelos, N.: Cascade R-CNN: high quality object detection and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1483–1498 (2021). https://doi.org/10.1109/TPAMI.2019.2956516
Chakraborty, S., Aich, S., Kumar, A., Sarkar, S., Sim, J.S., Kim, H.C.: Detection of cancerous tissue in histopathological images using dual-channel residual convolutional neural networks (DCRCNN). In: 2020 22nd International Conference on Advanced Communication Technology (ICACT), pp. 197–202 (2020). https://doi.org/10.23919/ICACT48636.2020.9061289
Chen, C., Liu, M., Meng, X., Xiao, W., Ju, Q.: RefineDetLite: a lightweight one-stage object detection framework for CPU-only devices. CoRR abs/1911.08855 (2019). arXiv:1911.08855
Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448. IEEE (2015)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)
Ikshwaku, S., Srinivasan, A., Varghese, A., Gubbi, J.: Railway corridor monitoring using deep drone vision. In: Verma, N., Ghosh, A. (eds.) Computational Intelligence: Theories, Applications and Future Directions - Volume II. Advances in Intelligent Systems and Computing, vol. 799, pp. 361–372. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1135-2_28
Jocher, G., Stoken, A., Borovec, J.: ultralytics/yolov5: v3.0. https://doi.org/10.5281/zenodo.3983579
Kim, M., Jeong, J., Kim, S.: ECAP-YOLO: efficient channel attention pyramid yolo for small object detection in aerial image. Remote Sens. 13(23), 4851 (2021)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. CoRR abs/1808.01244 (2018). arXiv:1808.01244
Li, Y., Li, J., Lin, W., Li, J.: Tiny-DSOD: lightweight object detection for resource-restricted usages. CoRR abs/1807.11013 (2018). arXiv:1807.11013
Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: Light-head R-CNN: in defense of two-stage object detector. CoRR abs/1711.07264 (2017). arXiv:1711.07264
Li, Z., Peng, C., Yu, G., Zhang, X., Deng, Y., Sun, J.: DetNet: a backbone network for object detection. CoRR abs/1804.06215 (2018). arXiv:1804.06215
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944. IEEE (2017)
Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR abs/1612.03144 (2016). arXiv:1612.03144
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318–327 (2018)
Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR abs/1708.02002 (2017). arXiv:1708.02002
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8759–8768. IEEE (2018)
Liu, W., et al.: SSD: single shot multibox detector. CoRR abs/1512.02325 (2015). arXiv:1512.02325
Murthy, C.B., Hashmi, M.F.: Real time pedestrian detection using robust enhanced YOLOv3. In: 2020 21st International Arab Conference on Information Technology (ACIT), pp. 1–5. IEEE (2020)
Pasqualino, G., Furnari, A., Signorello, G., Farinella, G.M.: An unsupervised domain adaptation scheme for single-stage artwork recognition in cultural sites. Image Vis. Comput. 107, 104098 (2021). https://doi.org/10.1016/j.imavis.2021.104098
Putro, M.D., Nguyen, D.L., Priadana, A., Jo, K.H.: Fast person detector with efficient multi-level contextual block for supporting assistive robot. In: 2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS), pp. 1–6. IEEE (2022)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788. IEEE (2016)
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. CoRR abs/1804.02767 (2018). arXiv:1804.02767
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)
Sambolek, S., Ivasic-Kos, M.: Automatic person detection in search and rescue operations using deep CNN detectors. IEEE Access 9, 37905–37922 (2021)
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. CoRR abs/1801.04381 (2018). arXiv:1801.04381
Sibanyoni, S.V., Ramotsoela, D.T., Silva, B.J., Hancke, G.P.: A 2-D acoustic source localization system for drones in search and rescue missions. IEEE Sens. J. 19(1), 332–341 (2018)
Sun, W., Dai, L., Zhang, X., Chang, P., He, X.: RSOD: real-time small object detection algorithm in UAV-based traffic monitoring. Appl. Intell. 52(8), 8448–8463 (2022). https://doi.org/10.1007/s10489-021-02893-3
Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1571–1580. IEEE (2020)
Wang, C., Liao, H.M., Yeh, I., Wu, Y., Chen, P., Hsieh, J.: CSPNet: a new backbone that can enhance learning capability of CNN. CoRR abs/1911.11929 (2019). arXiv:1911.11929
Wang, R.J., Li, X., Ao, S., Ling, C.X.: Pelee: a real-time object detection system on mobile devices. CoRR abs/1804.06882 (2018). arXiv:1804.06882
Wang, X., Li, W., Guo, W., Cao, K.: SPB-YOLO: an efficient real-time detector for unmanned aerial vehicle images. In: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 099–104. IEEE (2021)
Zhang, J., Wang, P., Zhao, Z., Su, F.: Pruned-YOLO: learning efficient object detector using model pruning. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12894, pp. 34–45. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86380-7_4
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Single-shot refinement neural network for object detection. CoRR abs/1711.06897 (2017). arXiv:1711.06897
Zhu, P., et al.: Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 44(11), 7380–7399 (2021)
Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the government (MSIT). (No. 2020R1A2C2008972).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
An, J., Putro, M.D., Priadana, A., Jo, KH. (2023). Efficient Multi-Receptive Pooling for Object Detection on Drone. In: Na, I., Irie, G. (eds) Frontiers of Computer Vision. IW-FCV 2023. Communications in Computer and Information Science, vol 1857. Springer, Singapore. https://doi.org/10.1007/978-981-99-4914-4_2
Download citation
DOI: https://doi.org/10.1007/978-981-99-4914-4_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-4913-7
Online ISBN: 978-981-99-4914-4
eBook Packages: Computer ScienceComputer Science (R0)