Abstract
The article presents a method of document anonymization using generative adversarial neural networks. Unlike other anonymization methods, in the presented work, the anonymization concerns sensitive data in the form of images placed in text documents. Specifically, it is based on the CycleGAN idea and uses the U-Net model as a generator. To train the model we built a dataset with text documents with embedded real-life images, and medical images. The method is characterized by a very high efficiency, which enables the detection of 99.8% of areas where the sensitive image is located.
The work was supported by The National Centre for Research and Development (NCBR), the project no POIR.01.01.01-00-1431/19.
The project financed under the program of the Polish Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in the years 2019–2023 project number 020/RID/2018/19 the amount of financing PLN 12,000,000.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhabash, S., Ma, M.: A tale of four platforms: motivations and uses of Facebook, Twitter, Instagram, and Snapchat among college students? Soc. Med.+ Soc. 3(1), 2056305117691544 (2017)
Beaver, D., Kumar, S., Li, H.C., Sobel, J., Vajgel, P.: Finding a needle in haystack: Facebook’s photo storage. In: 9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 10) (2010)
Cohen, J.P., Morrison, P., Dao, L.: Covid-19 image data collection. arXiv 2003.11597 (2020). https://github.com/ieee8023/covid-chestxray-dataset
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Gabryel, M., Lada, D., Filutowicz, Z., Patora-Wysocka, Z., Kisiel-Dorohinicki, M., Chen, G.Y.: Detecting anomalies in advertising web traffic with the use of the variational autoencoder. J. Artif. Intell. Soft Comput. Res. 12(4), 255–256 (2022). https://doi.org/10.2478/jaiscr-2022-0017
Gabryel, M., Scherer, M.M., Sulkowski, L., Damaševičius, R.: Decision making support system for managing advertisers by ad fraud detection. J. Artif. Intell. Soft Comput. Res. 11(4), 331–339 (2021). https://doi.org/10.2478/jaiscr-2021-0020
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172(5), 1122–1131 (2018)
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Mosallanezhad, A., Beigi, G., Liu, H.: Deep reinforcement learning-based text anonymization against private-attribute inference. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2360–2369. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1240https://aclanthology.org/D19-1240
Röglin, J., Ziegeler, K., Kube, J., König, F., Hermann, K.G., Ortmann, S.: Improving classification results on a small medical dataset using a GAN; an outlook for dealing with rare disease datasets. Front. Comput. Sci., 102 (2022)
Romanov, A., Kurtukova, A., Shelupanov, A., Fedotova, A., Goncharov, V.: Authorship identification of a Russian-language text using support vector machine and deep neural networks. Future Internet 13(1), 3 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)
Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4), 611–629 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Korytkowski, M., Nowak, J., Scherer, R. (2023). Detecting Sensitive Data with GANs and Fully Convolutional Networks. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023. Lecture Notes in Computer Science(), vol 13995. Springer, Singapore. https://doi.org/10.1007/978-981-99-5834-4_22
Download citation
DOI: https://doi.org/10.1007/978-981-99-5834-4_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-5833-7
Online ISBN: 978-981-99-5834-4
eBook Packages: Computer ScienceComputer Science (R0)