Skip to main content

Can Ensemble Calibrated Learning Enhance Link Prediction? A Study on Commonsense Knowledge

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2023)

Abstract

Numerous prior works have shown how we can use knowledge graph embedding (KGE) models for ranking unseen facts that are likely to be true. Though these KGE models have been shown to make good performance on the ranking task with standard benchmark datasets, in practice only a subset of the top-k ranked list is indeed correct. This is due to the fact that most knowledge graphs are built under the open world assumption, while state-of-the-art KGE exploit the closed world assumption to build negative samples for training. In this paper, we show to address this problem by ensembling calibrated learning, following the principle that multiple calibrated models can make a stronger one. In experiments on the ConceptNet of commonsense knowledge base, we show significant improvement over each individual baseline model. This suggests that ensembling calibrated learning is a promising technique to improve link prediction with KGEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pykeen.readthedocs.io/en/stable/reference/negative_sampling.html.

  2. 2.

    https://scikit-learn.org/stable/modules/calibration.html#calibration explains possible concrete implementation of the calibration.

  3. 3.

    https://home.ttic.edu/~kgimpel/commonsense.html.

  4. 4.

    https://github.com/uma-pi1/kge.

References

  1. Ali, M., et al.: PyKEEN 1.0: a Python library for training and evaluating knowledge graph embeddings. J. Mach. Learn. Res. 22(82), 1–6 (2021)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., Nardi, D.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  5. Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  6. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  7. Joshi, U., Urbani, J.: Ensemble-based fact classification with knowledge graph embeddings. In: Groth, P., et al. (eds.) The Semantic Web: 19th International Conference, ESWC 2022, Hersonissos, Crete, Greece, 29 May–2 June 2022, Proceedings, pp. 147–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_9

  8. Krompaß, D., Tresp, V.: Ensemble solutions for link-prediction in knowledge graphs. In: PKDD ECML 2nd Workshop on Linked Data for Knowledge Discovery (2015)

    Google Scholar 

  9. Kull, M., Silva Filho, T.M., Flach, P.: Beyond sigmoids: how to obtain well-calibrated probabilities from binary classifiers with beta calibration (2017)

    Google Scholar 

  10. Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  11. Lenat, D.B.: CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)

    Article  Google Scholar 

  12. Li, X., Taheri, A., Tu, L., Gimpel, K.: Commonsense knowledge base completion. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1445–1455 (2016)

    Google Scholar 

  13. Lin, X., Quan, Z., Wang, Z.J., Ma, T., Zeng, X.: KGNN: knowledge graph neural network for drug-drug interaction prediction. In: IJCAI, vol. 380, pp. 2739–2745 (2020)

    Google Scholar 

  14. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  15. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)

    Article  Google Scholar 

  16. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  17. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 625–632 (2005)

    Google Scholar 

  18. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges: five diverse technology companies show how it’s done. Queue 17(2), 48–75 (2019)

    Article  Google Scholar 

  19. Reiter, R.: On closed world data bases. In: Readings in Artificial Intelligence, pp. 119–140. Elsevier (1981)

    Google Scholar 

  20. Rivas-Barragan, D., Domingo-Fernández, D., Gadiya, Y., Healey, D.: Ensembles of knowledge graph embedding models improve predictions for drug discovery. Briefings Bioinf. 23(6), bbac481 (2022)

    Google Scholar 

  21. Shi, B., Weninger, T.: Open-world knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  22. Singh, P., Lin, T., Mueller, E.T., Lim, G., Perkins, T., Li Zhu, W.: Open mind common sense: knowledge acquisition from the general public. In: Meersman, R., Tari, Z. (eds.) OTM 2002. LNCS, vol. 2519, pp. 1223–1237. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36124-3_77

    Chapter  Google Scholar 

  23. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  24. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

    Google Scholar 

  25. Tabacof, P., Costabello, L.: Probability calibration for knowledge graph embedding models. arXiv preprint arXiv:1912.10000 (2019)

  26. Tandon, N., De Melo, G., Suchanek, F., Weikum, G.: WebChild: harvesting and organizing commonsense knowledge from the web. In: Proceedings of the 7th ACM International Conference on Web Search and Data Mining, pp. 523–532 (2014)

    Google Scholar 

  27. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  28. Wan, G., Du, B., Pan, S., Wu, J.: Adaptive knowledge subgraph ensemble for robust and trustworthy knowledge graph completion. World Wide Web 23, 471–490 (2020)

    Article  Google Scholar 

  29. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  31. Wang, Z., Chen, T., Ren, J., Yu, W., Cheng, H., Lin, L.: Deep reasoning with knowledge graph for social relationship understanding. arXiv preprint arXiv:1807.00504 (2018)

  32. Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1271–1279 (2017)

    Google Scholar 

  33. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  34. Zang, L.J., Cao, C., Cao, Y.N., Wu, Y.M., Cun-Gen, C.: A survey of commonsense knowledge acquisition. J. Comput. Sci. Technol. 28(4), 689–719 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Z.H.: Ensemble learning. In: Li, S.Z., Jain, A. (eds.) Encyclopedia of Biometrics. Springer, Boston (2021). https://doi.org/10.1007/978-0-387-73003-5_293

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers JP22K18004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teeradaj Racharak .

Editor information

Editors and Affiliations

A Appendix: Preliminary Study on ConceptNet-100K

A Appendix: Preliminary Study on ConceptNet-100K

Table 4 shows our preliminary study with ConceptNet-100K. This table together with the results shown on the top part of Table 2 have inspired us to investigate an application of probability calibration on ensembling of KGEs.

Table 4. Preliminary results obtained from Pykeen under the default training

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Racharak, T., Jearanaiwongkul, W., Thwe, K.M. (2023). Can Ensemble Calibrated Learning Enhance Link Prediction? A Study on Commonsense Knowledge. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023. Lecture Notes in Computer Science(), vol 13996. Springer, Singapore. https://doi.org/10.1007/978-981-99-5837-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5837-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5836-8

  • Online ISBN: 978-981-99-5837-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics