Skip to main content

Complementary Environmental Selection for Evolutionary Many-Objective Optimization

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1869))

Included in the following conference series:

  • 348 Accesses

Abstract

In many-objective evolutionary algorithms (MaOEAs), environmental selection is an important operation, which can greatly affect the performance of convergence and distribution of solutions. However, different environmental selection strategies have different preferences. It is difficult to design an appropriate environment selection strategy to balance the convergence and population diversity. To address this issue, this paper proposes a complementary environmental selection strategy for evolutionary many-objective optimization (called CES-MaOEA). Firstly, a dual-population mechanism is utilized. The first population uses the environmental selection of NSGA-III, and the second population employs the environmental selection of radial space division based evolutionary algorithm (RSEA). Through complementary cooperation of two populations, the proposed strategy can make full use of the advantages of the two environmental selection methods. In order to verify the effectiveness of our approach, two well-known benchmark sets including DTLZ and MaF are tested. Performance of CES-MaOEA is compared with five state-of-the-art MaOEAs. Experimental results show that CES-MaOEA achieves competitive performance in terms of convergence and population diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  2. Balachandran, M., Gero, J.: A comparison of three methods for generating the pareto optimal set. Eng. Optim. 7(4), 319–336 (1984)

    Article  Google Scholar 

  3. Chang, F.J., Lai, J.S., Kao, L.S.: Optimization of operation rule curves and flushing schedule in a reservoir. Hydrol. Process. 17(8), 1623–1640 (2003)

    Article  Google Scholar 

  4. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using an artificial immune system. Genet. Program Evolvable Mach. 6, 163–190 (2005)

    Article  Google Scholar 

  5. Cui, Z., Zhang, M., Wang, H., Cai, X., Zhang, W.: A hybrid many-objective cuckoo search algorithm. Soft. Comput. 23, 10681–10697 (2019)

    Article  Google Scholar 

  6. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. He, C., Tian, Y., Jin, Y., Zhang, X., Pan, L.: A radial space division based evolutionary algorithm for many-objective optimization. Appl. Soft Comput. 61, 603–621 (2017)

    Article  Google Scholar 

  9. Ishibuchi, H., Matsumoto, T., Masuyama, N., Nojima, Y.: Effects of dominance resistant solutions on the performance of evolutionary multi-objective and many-objective algorithms. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 507–515 (2020)

    Google Scholar 

  10. Jafaryeganeh, H., Ventura, M., Soares, C.G.: Application of multi-criteria decision making methods for selection of ship internal layout design from a pareto optimal set. Ocean Eng. 202, 107151 (2020)

    Article  Google Scholar 

  11. Jiang, S., Yang, S.: A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evol. Comput. 21(3), 329–346 (2017)

    Article  Google Scholar 

  12. Laborie, P.: Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results. Artif. Intell. 143(2), 151–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2008)

    Article  Google Scholar 

  14. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  15. Mei, L., Thole, C.A.: Data analysis for parallel car-crash simulation results and model optimization. Simul. Model. Pract. Theory 16(3), 329–337 (2008)

    Article  Google Scholar 

  16. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)

    Article  Google Scholar 

  17. Qiu, W., Zhu, J., Wu, G., Fan, M., Suganthan, P.N.: Evolutionary many-objective algorithm based on fractional dominance relation and improved objective space decomposition strategy. Swarm Evol. Comput. 60, 100776 (2021)

    Article  Google Scholar 

  18. Sharawi, M., Zawbaa, H.M., Emary, E.: Feature selection approach based on whale optimization algorithm. In: 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI), pp. 163–168. IEEE (2017)

    Google Scholar 

  19. Song, G., Yu, L., Geng, Z.: Optimization of Wiedemann and Fritzsche car-following models for emission estimation. Transp. Res. Part D: Transp. Environ. 34, 318–329 (2015)

    Article  Google Scholar 

  20. Tian, Y., Cheng, R., Zhang, X., Cheng, F., Jin, Y.: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 22(4), 609–622 (2017)

    Article  Google Scholar 

  21. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  22. Wang, H., Wei, Z., Yu, G., Wang, S., Wu, J., Liu, J.: A two-stage many-objective evolutionary algorithm with dynamic generalized pareto dominance. Int. J. Intell. Syst. 37, 9833–9862 (2022)

    Article  Google Scholar 

  23. Wang, S., Wang, H., Wu, J., Liu, J., Zhang, H.: Many-objective artificial bee colony algorithm based on decomposition and dimension learning. In: Zhang, H., et al. (eds.) NCAA 2022. Communications in Computer and Information Science, vol. 1638, pp. 150–161. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-6135-9_12

    Chapter  Google Scholar 

  24. Wei, Z., et al.: Many-objective evolutionary algorithm based on dominance and objective space decomposition. In: Zhang, H., et al. (eds.) NCAA 2022. Communications in Computer and Information Science, vol. 1638, pp. 205–218. Springer, Singapore (2022)

    Chapter  Google Scholar 

  25. Ye, T., Wang, H., Wang, W., Zeng, T., Zhang, L., Huang, Z.: Artificial bee colony algorithm with an adaptive search manner and dimension perturbation. Neural Comput. Appl. 34, 1–15 (2022)

    Article  Google Scholar 

  26. Zeng, T., Wang, H., Wang, W., Ye, T., Zhang, L., Zhao, J.: Data-driven artificial bee colony algorithm based on radial basis function neural network. Int. J. Bio-Inspired Comput. 20(1), 1–10 (2022)

    Article  Google Scholar 

  27. Zeng, T., et al.: Artificial bee colony based on adaptive search strategy and random grouping mechanism. Expert Syst. Appl. 192, 116332 (2022)

    Article  Google Scholar 

  28. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  29. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2014)

    Article  Google Scholar 

  30. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62166027), and Jiangxi Provincial Natural Science Foundation (No. 20212ACB212004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Z., Wang, H., Wang, S., Zhang, S., Xiao, D. (2023). Complementary Environmental Selection for Evolutionary Many-Objective Optimization. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1869. Springer, Singapore. https://doi.org/10.1007/978-981-99-5844-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5844-3_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5843-6

  • Online ISBN: 978-981-99-5844-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics