Skip to main content

A Positive-Negative Dual-View Model for Knowledge Tracing

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1870))

Included in the following conference series:

  • 371 Accesses

Abstract

Knowledge Tracing (KT) aims to accurately trace the states of evolving knowledge of students and reliably predict students’ performances on future exercises. This task has been widely studied, leading to fast promotion on the development of online education. However, KT still faces two problems. First, most of previous work directly assigned an embedding for each question, which ignores semantic information contained in the questions. Secondly, students may learn differently from correct and incorrect answers to a question. Therefore, the embedding of a question should change based on the correctness of a student’s answer. In this paper, we propose a positive-negative dual-view model named PDNV for knowledge tracing. Firstly, we leverage two Graph Convolutional Networks to learn question embeddings from both positive and negative perspectives. Secondly, an information filtering module is designed based on students’ answers to selectively enhance positive or negative information in question embeddings. Experiment results based on three widely-used datasets demonstrate that our model outperforms state-of-the-art baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4, 253–278 (1994)

    Article  Google Scholar 

  2. Wu, Z., Tang, Y., Liu, H.: Survey of personalized learning recommendation. J. Front. Comput. Sci. Technol. 16, 21 (2022)

    Google Scholar 

  3. Piech, C., et al.: Deep knowledge tracing. Adv. Neural. Inf. Process. Syst. 28, 505–513 (2015)

    Google Scholar 

  4. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th international conference on World Wide Web, pp. 765–774. The International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2017)

    Google Scholar 

  5. Yang, Y., et al.: Gikt: a graph-based interaction model for knowledge tracing. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 299–315. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_18

    Chapter  Google Scholar 

  6. Choi, Y., et al.: Towards an appropriate query, key, and value computation for knowledge tracing. In: Proceedings of the Seventh ACM Conference on Learning@ Scale, pp. 341–344. Association for Computing Machinery, New York (2020)

    Google Scholar 

  7. Shin, D., Shim, Y., Yu, H., Lee, S., Kim, B., Choi, Y.: Saint+: integrating temporal features for ednet correctness prediction. In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp. 490–496. Association for Computing Machinery, New York (2021)

    Google Scholar 

  8. Shen, S., et al.: Learning process-consistent knowledge tracing. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1452–1460. Association for Computing Machinery, New York (2021)

    Google Scholar 

  9. Grimaldi, P.J., Karpicke, J.D.: When and why do retrieval attempts enhance subsequent encoding? Mem. Cogn. 40, 505–513 (2012)

    Article  Google Scholar 

  10. Kang, S.H., Pashler, H., Cepeda, N.J., Rohrer, D., Carpenter, S.K., Mozer, M.C.: Does incorrect guessing impair fact learning? J. Educ. Psychol. 103, 48 (2011)

    Article  Google Scholar 

  11. Zhang, K., Yao, Y.: A three learning states bayesian knowledge tracing model. Knowl.-Based Syst. 148, 189–201 (2018)

    Article  Google Scholar 

  12. Qiu, Y., Qi, Y., Lu, H., Pardos, Z.A., Heffernan, N.T.: Does time matter? modeling the effect of time with bayesian knowledge tracing. In: EDM 2011 - Proceedings of the 4th International Conference on Educational Data Mining, pp. 139–148 (2011)

    Google Scholar 

  13. Pardos, Z.A., Heffernan, N.T.: Kt-idem: Introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_21

    Chapter  Google Scholar 

  14. Cen, H.: Generalized learning factors analysis: improving cognitive models with machine learning. Carnegie Mellon University (2009)

    Google Scholar 

  15. Cen, H., Koedinger, K., Junker, B.: Comparing two irt models for conjunctive skills. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 796–798. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_111

    Chapter  Google Scholar 

  16. Pavlik Jr, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis–a new alternative to knowledge tracing. In: 14th International Conference on Artificial Intelligence in Education (AIED 2009), Frontiers in Artificial Intelligence and Applications, p. 531+. IOS press, Amsterdam (2009)

    Google Scholar 

  17. Zhang, L., Xiong, X., Zhao, S., Botelho, A., Heffernan, N.T.: Incorporating rich features into deep knowledge tracing. In: Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, pp. 169–172. Association Computing Machinery, New York (2017)

    Google Scholar 

  18. Nagatani, K., Zhang, Q., Sato, M., Chen, Y.Y., Chen, F., Ohkuma, T.: Augmenting knowledge tracing by considering forgetting behavior. In: The World Wide Web Conference, pp. 3101–3107. Association for Computing Machinery, New York (2019)

    Google Scholar 

  19. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. In: EDM 2019 - Proceedings of the 12th International Conference on Educational Data Mining, pp. 384–389. International Educational Data Mining Society (2019)

    Google Scholar 

  20. Shi, P., Michael Yudelson, L.O., Huang, Y.: Deep knowledge tracing with transformers. In: Bittencourt, I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 252–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_46

    Chapter  Google Scholar 

  21. Minn, S., Desmarais, M.C., Zhu, F., Xiao, J., Wang, J.: Dynamic student classiffication on memory networks for knowledge tracing. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11440, pp. 163–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16145-3_13

    Chapter  Google Scholar 

  22. Nakagawa, H., Iwasawa, Y., Matsuo, Y.: Graph-based knowledge tracing: modeling student proficiency using graph neural network. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 156–163. Association for Computing Machinery, New York (2019)

    Google Scholar 

  23. Song, X., Li, J., Lei, Q., Zhao, W., Chen, Y., Mian, A.: Bi-clkt: bi-graph contrastive learning based knowledge tracing. Knowl.-Based Syst. 241, 108274 (2022)

    Article  Google Scholar 

  24. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  25. Feng, M., Heffernan, N., Koedinger, K.: Addressing the assessment challenge with an online system that tutors as it assesses. User Model. User-Adap. Inter. 19, 243–266 (2009)

    Article  Google Scholar 

  26. Choi, Y., et al.: Ednet: a large-scale hierarchical dataset in education. In: Bittencourt, I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 69–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Q., Chen, G., Shuai, L., Pu, S., Liu, H., Hao, T. (2023). A Positive-Negative Dual-View Model for Knowledge Tracing. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1870. Springer, Singapore. https://doi.org/10.1007/978-981-99-5847-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5847-4_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5846-7

  • Online ISBN: 978-981-99-5847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics