Skip to main content

A Data-driven Intermediate Estimator-based Approach for Collaborative Fault-tolerant Tracking Control of Multi-agent Systems

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1870))

Included in the following conference series:

  • 629 Accesses

Abstract

This paper presents a data-driven distributed intermediate estimator-based cooperative tracking control method for multi-agent systems with actuator faults and unknown model parameters. A residual generator is constructed using the process input and output data of the system with unknown model parameters, and a new error state variable is constructed. Moreover, a distributed intermediate estimator is designed to estimate the combined unknown input signal of the followers. Based on this estimation signal, the control law is designed to compensate for the unknown inputs to the followers. Finally, the experimental results verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Schrick, D.: Remarks on terminology in the field of supervision, fault detection and diagnosis. IFAC Proc. Vol. 30(18), 959–964 (1997)

    Article  Google Scholar 

  2. Liu, Y., Patton, R.J., Shi, S.: Actuator fault-tolerant offshore wind turbine load mitigation control. Renewable Energy 205, 432–446 (2023)

    Article  Google Scholar 

  3. Li, D., Wang, Y., Wang, J., Wang, C., Duan, Y.: Recent advances in sensor fault diagnosis: A review. Sens. Actuators, A 309, 111990 (2020)

    Article  Google Scholar 

  4. Arunthavanathan, R., Khan, F., Ahmed, S., Imtiaz, S.: An analysis of process fault diagnosis methods from safety perspectives. Comput. Chem. Eng. 145, 107197 (2021)

    Article  Google Scholar 

  5. Crary, J.: Techniques of the Observer. MIT Press Cambridge, MA (1990)

    Google Scholar 

  6. Xiong, J., Chang, X., Yi, X.: Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization. Appl. Math. Comput. 338, 774–788 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Li, L., Chadli, M., Ding, S.X., Qiu, J., Yang, Y.: Diagnostic observer design for t-s fuzzy systems: application to real-time-weighted fault-detection approach. IEEE Trans. Fuzzy Syst. 26(2), 805–816 (2017)

    Article  Google Scholar 

  8. Wang, M., Song, X., Song, S., Lu, J.: Diagnostic observer-based fault detection for nonlinear parabolic PDE systems via dual sampling approaches. J. Franklin Inst. 357(12), 8203–8228 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, S., Yang, J., Chen, W.H., Chen, X.: Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans. Industr. Electron. 59(12), 4792–4802 (2011)

    Article  Google Scholar 

  10. Zhu, J., Yang, G., Wang, H., Wang, F.: Fault estimation for a class of nonlinear systems based on intermediate estimator. IEEE Trans. Autom. Control 61(9), 2518–2524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Amin, A.A., Hasan, K.M.: A review of fault tolerant control systems: advancements and applications. Measurement 143, 58–68 (2019)

    Article  Google Scholar 

  12. Zhou, K., Ren, Z.: A new controller architecture for high performance, robust, and fault-tolerant control. IEEE Trans. Autom. Control 46(10), 1613–1618 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hua, C., Ding, S.X., Shardt, Y.A.: A new method for fault-tolerant control through q-learning. IFAC-PapersOnLine 51(24), 38–45 (2018)

    Article  Google Scholar 

  14. Zhang, K., Jiang, B., Shi, P.: Adjustable parameter-based distributed fault estimation observer design for multiagent systems with directed graphs. IEEE Trans. Cybern. 47(2), 306–314 (2016)

    Google Scholar 

  15. Menon, P.P., Edwards, C.: Robust fault estimation using relative information in linear multi-agent networks. IEEE Trans. Autom. Control 59(2), 477–482 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, C., Lewis, F.L., Xie, S., Modares, H., Liu, Z., Zuo, S., Davoudi, A.: Resilient adaptive and h \( \infty \) controls of multi-agent systems under sensor and actuator faults. Automatica 102, 19–26 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhu, J., Zhang, W., Yu, L., Zhang, D.: Robust distributed tracking control for linear multi-agent systems based on distributed intermediate estimator. J. Franklin Inst. 355(1), 31–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, J., Yang, G., Zhang, W., Yu, L.: Cooperative fault-tolerant tracking control for multiagent systems: An intermediate estimator-based approach. IEEE Trans. Cybern. 48(10), 2972–2980 (2017)

    Article  Google Scholar 

  19. Zhu, J., Xia, Z., Wang, X.: A new residual generation-based fault estimation approach for cyber-physical systems. IEEE Trans. Instrum. Meas. 72, 1–9 (2023)

    Google Scholar 

Download references

Acknowledgement

   This work was supported in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LZ21F030004, in part by the Key Research and Development Program of Zhejiang under Grant 2022C01018, and in part by the National Natural Science Foundation of China under Grant U21B2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ying, L., Zhu, J., Pan, Y. (2023). A Data-driven Intermediate Estimator-based Approach for Collaborative Fault-tolerant Tracking Control of Multi-agent Systems. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1870. Springer, Singapore. https://doi.org/10.1007/978-981-99-5847-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5847-4_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5846-7

  • Online ISBN: 978-981-99-5847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics