Skip to main content

A Two-Stage Framework for Kidney Segmentation in Ultrasound Images

  • Conference paper
  • First Online:
International Conference on Neural Computing for Advanced Applications (NCAA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1870))

Included in the following conference series:

Abstract

In this paper, we propose an algorithm framework for kidney segmentation in ultrasound images. Due to the characteristics of kidney ultrasound images, such as high noise, heterogeneous structure, low contrast, multiple artifacts, and relatively fixed shape, accurately segmenting clear and complete kidney structures from the images is still a challenging task. Our framework consists of two parts: shape aware dual-task multi-scale fusion network and self-correction. The first part uses a U-shape structure with multi-scale feature cross fusion skip connections to perform segmentation and can simultaneously predict the segmentation map and the shape-aware prediction level set function, we use a dual-task consistency module to constrain the shape of the segmentation map, enabling the network to learn the target area more accurately, through dual-task consistency supervised learning, we obtain a pre-trained model. The second part uses an iterative aggregation strategy for the pre-trained model to optimize it and reduce the noise and other issues in the prediction results. Experimental results show that our algorithm framework outperforms several state-of-the-art methods on kidney ultrasound datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levin, A., Stevens, P.E.: Early detection of CKD: the benefits, limitations and effects on prognosis. Journal 7(8), 446–457 (2011)

    Google Scholar 

  2. Torres, H.R., Queiros, S., Morais, P., Oliveira, B., Fonseca, J.C., Vilaca, J.L.: Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: a systematic review. Comput. Methods Programs Biomed. 157, 49–67 (2018)

    Article  Google Scholar 

  3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  4. Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13803, pp. 205–218. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25066-8_9

    Chapter  Google Scholar 

  5. Xie, J., Jiang, Y., Tsui, H.: Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE Trans. Med. Imaging 24(1), 45–57 (2005). https://doi.org/10.1109/TMI.2004.837792

    Article  Google Scholar 

  6. Sandmair, M., Hammon, M., Seuss, H., Theis, R., Uder, M., Janka, R.: Semiautomatic segmentation of the kidney in magnetic resonance images using unimodal thresholding. BMC. Res. Notes 9(1), 1–10 (2016)

    Article  Google Scholar 

  7. Marsousi, M., Plataniotis, K.N., Stergiopoulos, S.: An automated approach for kidney segmentation in three-dimensional ultrasound images. IEEE J. Biomed. Health Inform. 21(4), 1079–1094 (2017). https://doi.org/10.1109/JBHI.2016.2580040

    Article  Google Scholar 

  8. Mendoza, C.S., Kang, X., Safdar, N., Myers, E., Peters, C.A., Linguraru, M.G.: Kidney segmentation in ultrasound via genetic initialization and Active Shape Models with rotation correction. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, USA, pp. 69–72 (2013). https://doi.org/10.1109/ISBI.2013.6556414

  9. Jokar, E., Pourghassem, H., Linguraru: Kidney segmentation in ultrasound images using curvelet transform and shape prior. In: 2013 International Conference on Communication Systems and Network Technologies, Gwalior, India, pp. 180–185 (2013). https://doi.org/10.1109/CSNT.2013.47

  10. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  12. Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudhakar, P., Vaidya, V.: Learning and incorporating shape models for semantic segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 203–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_24

    Chapter  Google Scholar 

  13. Jackson, P., Hardcastle, N., Dawe, N., Kron, T., Hofman, M.S., Hicks, R.J.: Deep learning kidney segmentation for fully automated radiation dose estimation in unsealed source therapy. Front. Oncol. 8, 215 (2018)

    Article  Google Scholar 

  14. Weerasinghe, N.H., Lovell, N.H., Welsh, A.W., Stevenson, G.N.: Multi-parametric fusion of 3D power Doppler ultrasound for fetal kidney segmentation using fully convolutional neural networks. IEEE J. Biomed. Health Inform. 25(6), 2050–2057 (2020)

    Article  Google Scholar 

  15. Chen, J., et al.: TransuNet: transformers make strong encoders for medical image segmentation. arXiv preprint. arXiv:2102.04306 (2021)

  16. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6881–6890 (2021)

    Google Scholar 

  17. Zhuang, X., et al.: Residual Swin transformer Unet with consistency regularization for automatic breast ultrasound tumor segmentation. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3071–3075(2022)

    Google Scholar 

  18. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  19. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  20. Wang, H., Cao, P., Wang, J., Zaiane, O.R.: UctransNet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 2441–2449 (2022)

    Google Scholar 

  21. Yin, S., et al.: Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks. Med. Image Anal. 60, 101602 (2020)

    Article  Google Scholar 

  22. Sun, J., Darbehani, F., Zaidi, M., Wang, B.: SAUNet: shape attentive U-net for interpretable medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 797–806. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_77

    Chapter  Google Scholar 

  23. Ma, J., et al.: How distance transform maps boost segmentation CNNs: an empirical study. In: Medical Imaging with Deep Learning, pp. 479–492. PMLR (2020)

    Google Scholar 

  24. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  25. Xue, Y., et al.: Shape-aware organ segmentation by predicting signed distance maps. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 12565–12572 (2020)

    Google Scholar 

  26. Luo, X., Chen, J., Song, T., Wang, G., Huang, X.: Semi-supervised medical image segmentation through dual-task consistency. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, No. 10, pp. 8801–8809 (2021)

    Google Scholar 

  27. Zou, H., Gong, X., Luo, J., Li, T.: A robust breast ultrasound segmentation method under noisy annotations. Comput. Methods Programs Biomed. 209, 106327 (2021)

    Article  Google Scholar 

  28. Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3260–3271 (2020)

    Article  Google Scholar 

  29. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  30. Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 430–436 (2005)

    Google Scholar 

  31. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  32. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint. arXiv:1611.01144 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, Z., Liu, X., Gong, Y., Hao, T., Zeng, K. (2023). A Two-Stage Framework for Kidney Segmentation in Ultrasound Images. In: Zhang, H., et al. International Conference on Neural Computing for Advanced Applications. NCAA 2023. Communications in Computer and Information Science, vol 1870. Springer, Singapore. https://doi.org/10.1007/978-981-99-5847-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5847-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5846-7

  • Online ISBN: 978-981-99-5847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics