Abstract
Diffusion MRI is an important technology for detecting human brain nerve pathways, aiding in neuroscience and clinical diagnosis. However, the Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (M-CSD) method, which is a significant technique for reconstructing the fibre orientation distribution function (fODF), requires multishell data with a considerable number of gradient directions to achieve high accuracy. As multishell data are not easy to acquire, the Single-Shell Single-Tissue CSD (S-CSD) suffers from the Partial Volume Effect (PVE). It would be more convenient if we could use single-shell data to reconstruct better fODFs.
We propose a novel method that utilizes the spatial structure and anisotropy of dMRI data through a spherical convolution network. We reduce the need for high-quality data by utilizing b = 1000 s/mm2 with 60 gradient directions or even less. Our results show that our method outperforms the traditional S-CSD when compared to the M-CSD results as our gold standard.
References
Le Bihan, D.: Looking into the functional architecture of the brain with diffusion mri. Nat. Rev. Neurosci. 4(6), 469–480 (2003)
Garyfallidis, E.: Towards an accurate brain tractography. PhD thesis, University of Cambridge (2013)
Basser, P.J., Mattiello, J., LeBihan, D.: Mr diffusion tensor spectroscopy and imaging. Biophys. J . 66(1), 259–267 (1994)
Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., Sijbers, J.: Multitissue constrained spherical deconvolution for improved analysis of multishell diffusion mri data. Neuroimage 103, 411–426 (2014)
Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion mri: nonnegativity constrained superresolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Zhao, F., et al.: Spherical u-net on cortical surfaces: methods and applications. In: Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, 2–7 June 2019, Proceedings 26, pp. 855–866. Springer (2019). https://doi.org/10.1007/978-3-030-20351-1_67
Zhao, F., et al.: Spherical deformable u-net: Application to cortical surface parcellation and development prediction. IEEE Trans. Med. Imaging 40(4), 1217–1228 (2021)
Koppers, S., Merhof, D.: Direct estimation of fibre orientations using deep learning in diffusion imaging. In: Machine Learning in Medical Imaging: 7th International Workshop, MLMI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, 17 October 2016, Proceedings 7, pp. 53–60. Springer (2016). https://doi.org/10.1007/978-3-319-47157-0_7
Schultz, T.: Learning a reliable estimate of the number of fibre directions in diffusion mri. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012: 15th International Conference, Nice, France, October 1–5, 2012, Proceedings, Part III 15, pp. 493–500. Springer (2012). https://doi.org/10.1007/978-3-642-33454-2_61
Koppers, S., Friedrichs, M., Merhof, D.: Reconstruction of diffusion anisotropies using 3d deep convolutional neural networks in diffusion imaging. In: Modelling, Analysis, and Visualization of Anisotropy, pp. 393–404. Springer (2017). https://doi.org/10.1007/978-3-319-61358-1_17
Lin, Z., et al.: Fast learning of fibre orientation distribution function for mr tractography using convolutional neural network. Med. Phys. 46(7), 3101–3116 (2019)
Zeng, R., et al.: Fod-net: A deep learning method for fibre orientation distribution angular super resolution. Med. Image Anal. 79, 102431 (2022)
Patel, K., Groeschel, S., Schultz, T.: Better Fiber ODFs from suboptimal data with autoencoder based regularization. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 55–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_7
Nath, V., Pathak, S.K., Schilling, K.G., Schneider, W., Landman, B.A.: Deep learning estimation of multitissue constrained spherical deconvolution with limited single shell dw-mri. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 162–171. SPIE (2020)
Lucena, O., Vos, S.B., Vakharia, V., Duncan, J., Ourselin, S., Sparks, R.: Convolutional neural networks for fibre orientation distribution enhancement to improve single-shell diffusion mri tractography. In: Computational Diffusion MRI: MICCAI Workshop, Shenzhen, China, October 2019, pp. 101–112. Springer (2020). https://doi.org/10.1007/978-3-030-52893-5_9
Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fibre heterogeneity. Magn. Reson. Med. Official J. Internat. Soc. Magn. Reson. Med. 48(4), 577–582 (2002)
Jha, R.R., Nigam, A., Bhavsar, A., Pathak, S.K., Schneider, W., Rathish, K.: Multishell d-mri reconstruction via residual learning utilizing encoder-decoder network with attention (msr-net). In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1709–1713 (2020). IEEE
Sedlar, S., Papadopoulo, T., Deriche, R., Deslauriers-Gauthier, S.: Diffusion mri fibre orientation distribution function estimation using voxelwise spherical u-net. In: Computational Diffusion MRI: International MICCAI Workshop, Lima, Peru, October 2020, pp. 95–106. Springer (2021). https://doi.org/10.1007/978-3-030-73018-5_8
Lucena, O., et al.: Enhancing the estimation of fibre orientation distributions using convolutional neural networks. Comput. Biol. Med. 135, 104643 (2021)
Karimi, D., Vasung, L., Jaimes, C., Machado-Rivas, F., Warfield, S.K., Gholipour, A.: Learning to estimate the fibre orientation distribution function from diffusion-weighted mri. Neuroimage 239, 118316 (2021)
Karimi, D., et al.: A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging. Med. Image Anal. 72, 102129 (2021)
Canales-Rodríguez, E.J., et al.: Sparse wars: a survey and comparative study of spherical deconvolution algorithms for diffusion mri. Neuroimage 184, 140–160 (2019)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. Official J. Inter. Soc. Magn. Reson. Med. 56(2), 395–410 (2006)
Wilkins, B., Lee, N., Gajawelli, N., Law, M., Leporé, N.: Fibre estimation and tractography in diffusion mri: development of simulated brain images and comparison of multifibre analysis methods at clinical b-values. Neuroimage 109, 341–356 (2015)
Puttashamachar, N., Bagci, U.: End to end brain fibre orientation estimation using deep learning. arXiv preprint arXiv:1806.03969 (2018)
Ye, C., Prince, J.L.: Fibre orientation estimation guided by a deep network. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, 11–13 September 2017, Proceedings, Part I, pp. 575–583. Springer (2017). https://doi.org/10.1007/978-3-319-66182-7_66
Golkov, V., et al.: Q-space deep learning: twelve-fold shorter and model-free diffusion mri scans. IEEE Trans. Med. Imaging 35(5), 1344–1351 (2016)
Hagmann, P., Jonasson, L., Maeder, P., Thiran, J.-P., Wedeen, V.J., Meuli, R.: Understanding diffusion mr imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(suppl_1), 205–223 (2006)
Dell’Acqua, F., Tournier, J.-D.: Modelling white matter with spherical deconvolution: How and why? NMR Biomed. 32(4), 3945 (2019)
Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)
Tournier, J.-D., et al.: Mrtrix3: A fast, flexible and open software framework for medical image processing and visualization. Neuroimage 202, 116137 (2019)
Anderson, A.W.: Measurement of fibre orientation distributions using high angular resolution diffusion imaging. Magn. Reson. Med. Official J. Inter. Soc. Magn. Reson Med. 54(5), 1194–1206 (2005)
Acknowledgements
This work was supported by the Natural Science Foundation of Heilongjiang Province (LH2021F046).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhao, H., Deng, C., Wang, Y., Ma, J. (2023). Better Fibre Orientation Estimation with Single-Shell Diffusion MRI Using Spherical U-Net. In: Yu, Z., et al. Data Science. ICPCSEE 2023. Communications in Computer and Information Science, vol 1880. Springer, Singapore. https://doi.org/10.1007/978-981-99-5971-6_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-5971-6_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-5970-9
Online ISBN: 978-981-99-5971-6
eBook Packages: Computer ScienceComputer Science (R0)