Skip to main content

Link Prediction Based on the Relational Path Inference of Triangular Structures

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1880))

  • 221 Accesses

Abstract

Link prediction is used to complete the knowledge graph. Convolutional neural network models are commonly used for link prediction tasks, but they only consider the direct relations between entity pairs, ignoring the semantic information contained in the relation paths. In addition, the embedding dimension of the relation is generally larger than that of the entity in the ConvR model, which blocks the progress of downstream tasks. If we reduce the embedding dimension of the relation, the performance will be greatly degraded. This paper proposes a convolutional model PITri-R-ConvR based on triangular structure relational inference. The model uses relational path inference to capture semantic information, while using a triangular structure to ensure the reliability and computational efficiency of relational inference. In addition, the decoder R-ConvR improves the initial embedding of the ConvR model, which solves the problems of the ConvR model and significantly improves the prediction performance. Finally, this paper conducts sufficient experiments in multiple datasets to verify the superiority of the model and the rationality of each module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bollacker, K., Evans, C., Paritosh, P., et al.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on Worldwide Web, pp. 697–706 (2007)

    Google Scholar 

  4. Hoffart, J., Suchanek, F.M., Berberich, K., et al.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mahdisoltani, F., Biega, J., Suchanek, F.: Yago3: a knowledge base from multilingual wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research. CIDR Conference (2014)

    Google Scholar 

  6. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  7. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modelling multirelational data. Adv. Neural Inf. Process. Syst. 26, 1–9 (2013)

    Google Scholar 

  8. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1 (2014)

    Google Scholar 

  9. Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29, no. 1 (2015)

    Google Scholar 

  10. Ji, G., He, S., Xu, L., et al.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1: Long papers, pp. 687–696 (2015)

    Google Scholar 

  11. Fan, M., Zhou, Q., Chang, E., et al.: Transition-based knowledge graph embedding with relational mapping properties. In: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing, pp. 328–337 (2014)

    Google Scholar 

  12. Sun, Z., Deng, Z.H., Nie, J.Y., et al.: Rotate: knowledge graph embedding by relational rotation in complex space (2019). arXiv preprint arXiv:1902.10197

  13. Zhang, Z., Cai, J., Zhang, Y., et al.: Learning hierarchy-aware knowledge graph embeddings for link prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, pp. 3065–3072 (2020)

    Google Scholar 

  14. Balazevic, I., Allen, C., Hospedales, T.: Multirelational poincaré graph embeddings. Adv. Neural Inf. Process. Syst. 32, 1–11 (2019)

    Google Scholar 

  15. Ebisu, T., Ichise, R.: Toruse: knowledge graph embedding on a lie group. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  16. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multirelational data. In: ICML, vol. 11, no. 10.5555, pp. 3104482–3104584 (2011)

    Google Scholar 

  17. Yang, B., Yih, W., He, X., et al.: Embedding entities and relations for learning and inference in knowledge bases (2014). arXiv preprint arXiv:1412.6575

  18. Trouillon, T., Welbl, J., Riedel, S., et al.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080. PMLR (2016)

    Google Scholar 

  19. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, 30, no. 1 (2016)

    Google Scholar 

  20. Dettmers, T., Minervini, P., Stenetorp, P., et al.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  21. Jiang, X., Wang, Q., Wang, B.: Adaptive convolution for multirelational learning. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 978–987 (2019)

    Google Scholar 

  22. Ren, F., Li, J., Zhang, H., et al.: Knowledge graph embedding with atrous convolution and residual learning (2020). arXiv preprint arXiv:2010.12121

  23. Vashishth, S., Sanyal, S., Nitin, V., et al.: Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 03, 3009–3016 (2020)

    Google Scholar 

  24. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., et al.: A novel embedding model for knowledge base completion based on convolutional neural network (2017). arXiv preprint arXiv:1712.02121

  25. Neelakantan, A., Roth, B., McCallum, A.: Compositional vector space models for knowledge base completion (2015). arXiv preprint arXiv:1504.06662

  26. Kamigaito, H., Hayashi, K.: Unified interpretation of softmax cross-entropy and negative sampling: With case study for knowledge graph embedding (2021). arXiv preprint arXiv:2106.07250

  27. Xie, X., Zhang, N., Li, Z., et al.: From discrimination to generation: knowledge graph completion with generative transformer. In: Companion Proceedings of the Web Conference 2022, pp. 162–165 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China under Grant No. 20201710200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilong Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Han, Q., Li, L., Wang, Y. (2023). Link Prediction Based on the Relational Path Inference of Triangular Structures. In: Yu, Z., et al. Data Science. ICPCSEE 2023. Communications in Computer and Information Science, vol 1880. Springer, Singapore. https://doi.org/10.1007/978-981-99-5971-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5971-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5970-9

  • Online ISBN: 978-981-99-5971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics