Skip to main content

Research on Link Prediction Algorithms Based on Multichannel Structure Modelling

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1880))

  • 429 Accesses

Abstract

Today's link prediction methods are based on the network structure using a single-channel approach for prediction, and there is a lack of link prediction algorithms constructed from a multichannel approach, which makes the features monotonous and noncomplementary. To address this problem, this paper proposes a link prediction algorithm based on multichannel structure modelling (MCLP). First, the network is sampled three times to construct its three subgraph structures. Second, the node representation vectors of the network are learned separately for each subgraph on a single channel. Then, the three node representation vectors are combined, and the similarity matrix is calculated for the combined vectors. Finally, the performance of the MCLP algorithm is evaluated by calculating the AUC using the similarity matrix and conducting multiple experiments on three citation network datasets. The experimental results show that the proposed link prediction algorithm has an AUC of 98.92%, which is better than the performance of the 24 link prediction comparison algorithms used in this paper. The experimental results sufficiently prove that the MCLP algorithm can effectively extract the relationships between network nodes, and confirm its effectiveness and feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, X., Li, Y., Zhang, Z., Han, S., Pan, H.: A joint link prediction method for social network. In: Wang, H., et al. (eds.) ICYCSEE 2015. CCIS, vol. 503, pp. 56–64. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46248-5_8

    Chapter  Google Scholar 

  2. Schafer, L., Graham, J.W.: Missing data: our view of the state of the art. Psychol Methods 7(2), 147–152 (2016)

    Article  Google Scholar 

  3. Kossinets, G.: Effects of missing data in social networks. Social Netw. 28(3), 247–268 (2003)

    Article  Google Scholar 

  4. Albert, R., Barabasi, A.L.: Statisrical mechanics of complex networks. Rev. Mod. Phys. 74(51), 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liben-nowell, D., Kleinberg, J.: The link-prediction problems for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  6. Ye, Z.L., Cao, R., Zhao, H.X., Zhang, K., Zhu, Y.: Link prediction based on matrix factorization for DeepWalk. Appl. Res. Comput. 37(02), 424–429 (2020)

    Google Scholar 

  7. Bianconi, G.: Entropy of network ensembles. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 79(2), 036114 (2009)

    Article  MathSciNet  Google Scholar 

  8. Bu, X.Y., Chen, M.L.: Research on link prediction in social networks. Researches Libr. Sci. (17), 17–21 (2016)

    Google Scholar 

  9. Liu, W.P., Lu, L.Y.: Link prediction based on local random walk. Europhys. Lett. 89(5), 58007–58012 (2010)

    Article  Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv: 1609.02907

    Google Scholar 

  11. Zeng, H., Zhou, H., Srivastavs, A, et al.: Graphsaint: graph sampling based inductive learning method (2019). arXi: 1907.04931

    Google Scholar 

  12. Mikolov, T., Chen, K., Corrado, G., et al.: Efficient estimation of word representations in vector space (2013). arXiv: 1301.3781

    Google Scholar 

  13. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases and their compositionality. Adv. Neural. Inf. Process. Syst. 26(14), 3111–3119 (2013)

    Google Scholar 

  14. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  15. Yang, C., Liu, Z.: Comprehend deepwalk as matrix factorization (2015). arXi:1501.00358

    Google Scholar 

  16. Zhang, Y.X., Feng, Y.X.: A summary of the methods and development of link prediction. Meas. Control Technol. 38(02), 8–12 (2019)

    Google Scholar 

  17. Zhou, T., Lu, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  MATH  Google Scholar 

  18. Jaccard, P.: Etude de la distribution florale dans une portion des Alpes et du Jura. Bull. Soc. Vaud. Sci. Nat. 37(142), 547–579 (1901)

    Google Scholar 

  19. Sorenson, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter 5(4), 1–34 (1957)

    Google Scholar 

  20. Lu, L., Jin, C.H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80(4), 046122 (2009)

    Article  Google Scholar 

  21. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  22. Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 73(2), 026120 (2006)

    Article  Google Scholar 

  23. Fouss, F., Pirotte, A., Renders, J.M., et al.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

    Article  Google Scholar 

  24. Liao, L., Zhang, H.F.: Link prediction of opportunistic networks based on support vector machine. Inf. Commun. 09, 23–25 (2018)

    Google Scholar 

  25. Cao, R., Zhao, H.X., Ye, Z.L.: Link prediction algorithm based on network node text enhancement. Comput. Appl. Softw. 36(3), 227–235+242 (2019)

    Google Scholar 

  26. Zhu, Y., Xu, Y., et al.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

  27. Wang, S.Y., Gong, J.Y.: Link prediction algorithm fusing node label and strength relationship. Comput. Eng. Appl. 58(18), 71–77 (2022)

    Google Scholar 

Download references

Acknowledgement

This article was supported by the National Key Research and Development Program of China (No. 2020YFC1523300) and the Innovation Platform Construction Project of Qinghai Province (2022-ZJ-T02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonglin Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Zhou, L., Ye, Z., Zhao, H. (2023). Research on Link Prediction Algorithms Based on Multichannel Structure Modelling. In: Yu, Z., et al. Data Science. ICPCSEE 2023. Communications in Computer and Information Science, vol 1880. Springer, Singapore. https://doi.org/10.1007/978-981-99-5971-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5971-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5970-9

  • Online ISBN: 978-981-99-5971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics