Skip to main content

LGHAE: Local and Global Hyper-relation Aggregation Embedding for Link Prediction

  • Conference paper
  • First Online:
Data Science (ICPCSEE 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1880))

  • 280 Accesses

Abstract

The Knowledge Graph (KGs) have profoundly impacted many research fields. However, there is a problem of low data integrity in KGs. The binary-relational knowledge graph is more common in KGs but is limited by less information. It often has less content to use when predicting missing entities (relations). The hyper-relational knowledge graph is another form of KGs, which introduces much additional information (qualifiers) based on the main triple. The hyper-relational knowledge graph can effectively improve the accuracy of predicting missing entities (relations). The existing hyper-relational link prediction methods only consider the overall perspective when dealing with qualifiers and calculate the score function by combining the qualifiers with the main triple. However, these methods overlook the inherent characteristics of entities and relations. This paper proposes a novel Local and Global Hyper-relation Aggregation Embedding for Link Prediction (LGHAE). LGHAE can capture the semantic features of hyper-relational data from local and global perspectives. To fully utilize local and global features, Hyper-InteractE, as a new decoder, is designed to predict missing entities to fully utilize local and global features. We validated the feasibility of LGHAE by comparing it with state-of-the-art models on public datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs. In: Arenas, M., et al. (eds.) The Semantic Web-ISWC 2015: 14th International Semantic Web Conference, Bethlehem, PA, USA, 11–15 October 2015, Proceedings, ISWC 2015, Part I 14, vol. 9366, pp. 640–655. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_37

  2. Möller, C., Lehmann, J., Usbeck, R.: Survey on English entity linking on Wikidata: datasets and approaches. Semant. Web 13, 925 (2022)

    Article  Google Scholar 

  3. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  4. Nguyen, D.Q., Sirts, K., Qu, L., et al.: STransE: a novel embedding model of entities and relationships in knowledge bases. In: Proceedings of NAACL-HLT, pp. 460–466 (2016)

    Google Scholar 

  5. Wang, Z., Zhang, J., Feng, J., et al.: Knowledge graph embedding by translating on hyperplanes. Proc. AAAI Conf. Artif. Intell. 28(1) (2014)

    Google Scholar 

  6. Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. Proc. AAAI Conf. Artif. Intell. 29(1) (2015)

    Google Scholar 

  7. Zhang, W., Paudel, B., Zhang, W., et al.: Interaction embeddings for prediction and explanation in knowledge graphs. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 96–104 (2019)

    Google Scholar 

  8. Sun, Z., Deng, Z.H., Nie, J.Y., et al.: RotatE: knowledge graph embedding by relational rotation in complex space. In: International Conference on Learning Representations (2019)

    Google Scholar 

  9. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. ICML 11(10.5555), 3104482–3104584 (2011)

    Google Scholar 

  10. Yang, B., Yih, S.W., He, X., et al.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  11. Trouillon, T., Dance, C.R., Gaussier, É., et al.: Knowledge graph completion via complex tensor factorization. J. Mach. Learn. Res. 18, 1–38 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Balažević, I., Allen, C., Hospedales, T.: TuckER: tensor factorization for knowledge graph completion. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 5185–5194 (2019)

    Google Scholar 

  13. Dettmers, T., Minervini, P., Stenetorp, P., et al.: Convolutional 2D knowledge graph embeddings. Proc. AAAI Conf. Artif. Intell. 32(1) (2018)

    Google Scholar 

  14. Jiang, X., Wang, Q., Wang, B.: Adaptive convolution for multi-relational learning. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 978–987 (2019)

    Google Scholar 

  15. Vashishth, S., Sanyal, S., Nitin, V., et al.: InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions. Proc. AAAI Conf. Artif. Intell. 34(03), 3009–3016 (2020)

    Google Scholar 

  16. Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for knowledge base completion based on Convolutional Neural Network. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 2 (Short Papers), pp. 327–333 (2018)

    Google Scholar 

  17. Shang, C., Tang, Y., Huang, J., et al.: End-to-end structure-aware convolutional networks for knowledge base completion. Proc. AAAI Conf. Artif. Intell. 33(01), 3060–3067 (2019)

    Google Scholar 

  18. Vashishth, S., Sanyal, S., Nitin, V., et al.: Composition-based multi-relational graph convolutional networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  19. Liu, X., Tan, H., Chen, Q., et al.: RAGAT: relation aware graph attention network for knowledge graph completion. IEEE Access 9, 20840–20849 (2021)

    Article  Google Scholar 

  20. Wen, J., Li, J., Mao, Y., et al.: On the representation and embedding of knowledge bases beyond binary relations. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1300–1307 (2016)

    Google Scholar 

  21. Zhang, R., Li, J., Mei, J., et al.: Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding. In: Proceedings of the 2018 World Wide Web Conference, pp. 1185–1194 (2018)

    Google Scholar 

  22. Fatemi, B., Taslakian, P., Vazquez, D., et al.: Knowledge hypergraphs: prediction beyond binary relations. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 2191–2197 (2021)

    Google Scholar 

  23. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  24. Liu, Y., Yao, Q., Li, Y.: Generalizing tensor decomposition for n-ary relational knowledge bases. In: Proceedings of the Web Conference, pp. 1104–1114 (2020)

    Google Scholar 

  25. Liu, Y., Yao, Q., Li, Y.: Role-aware modeling for n-ary relational knowledge bases. In: Proceedings of the Web Conference, pp. 2660–2671 (2021)

    Google Scholar 

  26. Guan, S., Jin, X., Wang, Y., et al.: Link prediction on n-ary relational data. In: The World Wide Web Conference, pp. 583–593 (2019)

    Google Scholar 

  27. Guan, S., Jin, X., Guo, J., et al.: Link prediction on n-ary relational data based on relatedness evaluation. IEEE Trans. Knowl. Data Eng. 35(1), 672–685 (2021)

    Google Scholar 

  28. Rosso, P., Yang, D., Cudré-Mauroux, P.: Beyond triplets: hyper-relational knowledge graph embedding for link prediction. In: Proceedings of the Web Conference, pp. 1885–1896 (2020)

    Google Scholar 

  29. Galkin, M., Trivedi, P., Maheshwari, G., et al.: Message passing for hyper-relational knowledge graphs. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7346–7359 (2020)

    Google Scholar 

  30. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  31. Yu, D., Yang, Y.: Improving hyper-relational knowledge graph completion. arXiv preprint arXiv:2104.08167 (2021)

  32. Kristiadi, A., Khan, M.A., Lukovnikov, D., et al.: Incorporating literals into knowledge graph embeddings. In: Ghidini, C., et al. (eds.) The Semantic Web–ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, 26–30 October 2019, Proceedings, Part I 18, vol. 11778, pp. 347–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenheng Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, P., Qi, Z., Sun, H., Liu, C. (2023). LGHAE: Local and Global Hyper-relation Aggregation Embedding for Link Prediction. In: Yu, Z., et al. Data Science. ICPCSEE 2023. Communications in Computer and Information Science, vol 1880. Springer, Singapore. https://doi.org/10.1007/978-981-99-5971-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5971-6_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5970-9

  • Online ISBN: 978-981-99-5971-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics