Skip to main content

SentBench: Comprehensive Evaluation of Self-Supervised Sentence Representation with Benchmark Construction

  • Conference paper
  • First Online:
Chinese Computational Linguistics (CCL 2023)

Abstract

Self-supervised learning has been widely used to learn effective sentence representations. Previous evaluation of sentence representations mainly focuses on the limited combination of tasks and paradigms while failing to evaluate their effectiveness in a wider range of application scenarios. Such divergences prevent us from understanding the limitations of current sentence representations, as well as the connections between learning approaches and downstream applications. In this paper, we propose SentBench, a new comprehensive benchmark to evaluate sentence representations. SentBench covers 12 kinds of tasks and evaluates sentence representations with three types of different downstream application paradigms. Based on SentBench, we re-evaluate several frequently used self-supervised sentence representation learning approaches. Experiments show that SentBench can effectively evaluate sentence representations from multiple perspectives, and the performance on SentBench leads to some novel findings which enlighten future researches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/facebookresearch/SentEval.

  2. 2.

    We discard the MLP layer over [CLS] for evaluation.

  3. 3.

    https://github.com/makcedward/nlpaug.

References

  1. Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., Goldberg, Y.: Fine-grained analysis of sentence embeddings using auxiliary prediction tasks. arXiv preprint arXiv:1608.04207 (2016)

  2. Agirre, E., et al.: SemEval-2015 task 2: Semantic textual similarity, English, Spanish and pilot on interpretability. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). pp. 252–263. Association for Computational Linguistics, Denver, Colorado (2015). https://doi.org/10.18653/v1/S15-2045

  3. Agirre, E., et al.: SemEval-2014 task 10: multilingual semantic textual similarity. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). pp. 81–91. Association for Computational Linguistics, Dublin, Ireland (2014). https://doi.org/10.3115/v1/S14-2010

  4. Agirre, E., et al.: SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). pp. 497–511. Association for Computational Linguistics, San Diego, California (2016). https://doi.org/10.18653/v1/S16-1081

  5. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A.: SemEval-2012 task 6: a pilot on semantic textual similarity. In: SEM 2012: The First Joint Conference on Lexical and Computational Semantics – Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (2012). pp. 385–393. Association for Computational Linguistics, Montréal, Canada (2012), https://aclanthology.org/S12-1051

  6. Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., Guo, W.: SEM 2013 shared task: semantic textual similarity. In: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic Textual Similarity. pp. 32–43. Association for Computational Linguistics, Atlanta, Georgia, USA (2013), https://aclanthology.org/S13-1004

  7. Cer, D., et al.: Universal sentence encoder for English. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. pp. 169–174. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/D18-2029

  8. Conneau, A., Kiela, D.: SentEval: an evaluation toolkit for universal sentence representations. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). European Language Resources Association (ELRA), Miyazaki, Japan (2018), https://aclanthology.org/L18-1269

  9. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. pp. 670–680. Association for Computational Linguistics, Copenhagen, Denmark (2017). https://doi.org/10.18653/v1/D17-1070

  10. Conneau, A., Kruszewski, G., Lample, G., Barrault, L., Baroni, M.: What you can cram into a single vector: probing sentence embeddings for linguistic properties. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 2126–2136. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-1198

  11. Demszky, D., Movshovitz-Attias, D., Ko, J., Cowen, A., Nemade, G., Ravi, S.: GoEmotions: A dataset of fine-grained emotions. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 4040–4054. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.372

  12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423

  13. Feng, S.Y., et al.: A survey of data augmentation approaches for NLP. In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. pp. 968–988. Association for Computational Linguistics, Online (2021). https://doi.org/10.18653/v1/2021.findings-acl.84

  14. Gao, T., Yao, X., Chen, D.: SimCSE: Simple contrastive learning of sentence embeddings. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. pp. 6894–6910. Association for Computational Linguistics, Online and Punta Cana, Dominican Republic (2021). https://doi.org/10.18653/v1/2021.emnlp-main.552

  15. Ho, C.H., Nvasconcelos, N.: Contrastive learning with adversarial examples. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 17081–17093. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper/2020/file/c68c9c8258ea7d85472dd6fd0015f047-Paper.pdf

  16. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p. 168–177. KDD ’04, Association for Computing Machinery, New York, NY, USA (2004). https://doi.org/10.1145/1014052.1014073

  17. Jhamtani, H., Gangal, V., Hovy, E., Nyberg, E.: Shakespearizing modern language using copy-enriched sequence to sequence models. In: Proceedings of the Workshop on Stylistic Variation. pp. 10–19. Association for Computational Linguistics, Copenhagen, Denmark (Sep 2017). https://doi.org/10.18653/v1/W17-4902

  18. Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A., Fidler, S.: Skip-thought vectors. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems. vol. 28. Curran Associates, Inc. (2015), https://proceedings.neurips.cc/paper/2015/file/f442d33fa06832082290ad8544a8da27-Paper.pdf

  19. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019)

  20. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. pp. 7871–7880. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.703

  21. Liu, Y., et al.: Roberta: A robustly optimized Bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track Proceedings (2013), http://arxiv.org/abs/1301.3781

  23. Mostafazadeh, N., et al.: A corpus and cloze evaluation for deeper understanding of commonsense stories. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. pp. 839–849. Association for Computational Linguistics, San Diego, California (2016). https://doi.org/10.18653/v1/N16-1098

  24. Ni, J., et al.: Sentence-t5: scalable sentence encoders from pre-trained text-to-text models. In: Findings of the Association for Computational Linguistics: ACL 2022. pp. 1864–1874. Association for Computational Linguistics, Dublin, Ireland (2022), https://aclanthology.org/2022.findings-acl.146

  25. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  26. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04). pp. 271–278. Barcelona, Spain (2004). https://doi.org/10.3115/1218955.1218990

  27. Pang, B., Lee, L.: Seeing stars: exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05). pp. 115–124. Association for Computational Linguistics, Ann Arbor, Michigan (2005). https://doi.org/10.3115/1219840.1219855

  28. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). pp. 1532–1543 (2014)

    Google Scholar 

  29. Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). pp. 2227–2237. Association for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-1202

  30. Reimers, N., Beyer, P., Gurevych, I.: Task-oriented intrinsic evaluation of semantic textual similarity. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. pp. 87–96. The COLING 2016 Organizing Committee, Osaka, Japan (2016), https://aclanthology.org/C16-1009

  31. Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. pp. 1631–1642. Association for Computational Linguistics, Seattle, Washington, USA (2013), https://aclanthology.org/D13-1170

  32. Talmor, A., Herzig, J., Lourie, N., Berant, J.: CommonsenseQA: a question answering challenge targeting commonsense knowledge. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4149–4158. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1421

  33. Voorhees, E.M., Tice, D.M.: Building a question answering test collection. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 200–207 (2000)

    Google Scholar 

  34. Wang, B., Kuo, C.C.J., Li, H.: Just rank: rethinking evaluation with word and sentence similarities. In: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). pp. 6060–6077. Association for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.419

  35. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 9929–9939. PMLR (2020), http://proceedings.mlr.press/v119/wang20k.html

  36. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39(2), 165–210 (2005)

    Article  Google Scholar 

  37. Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., Ma, H.: Clear: contrastive learning for sentence representation. arXiv preprint arXiv:2012.15466 (2020)

  38. Yan, Y., Li, R., Wang, S., Zhang, F., Wu, W., Xu, W.: ConSERT: a contrastive framework for self-supervised sentence representation transfer. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). pp. 5065–5075. Association for Computational Linguistics, Online (Aug 2021). https://doi.org/10.18653/v1/2021.acl-long.393

  39. Zellers, R., Bisk, Y., Schwartz, R., Choi, Y.: SWAG: a large-scale adversarial dataset for grounded commonsense inference. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. pp. 93–104. Association for Computational Linguistics, Brussels, Belgium (2018). https://doi.org/10.18653/v1/D18-1009

  40. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text classification. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. p. 649–657. NIPS’15, MIT Press, Cambridge, MA, USA (2015)

    Google Scholar 

  41. Zhelezniak, V., Savkov, A., Shen, A., Hammerla, N.: Correlation coefficients and semantic textual similarity. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 951–962. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1100

  42. Zhu, X., Li, T., de Melo, G.: Exploring semantic properties of sentence embeddings. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). pp. 632–637. Association for Computational Linguistics, Melbourne, Australia (2018). https://doi.org/10.18653/v1/P18-2100

  43. Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S.: Aligning books and movies: towards story-like visual explanations by watching movies and reading books. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

Download references

Acknowledgements

We sincerely thank the reviewers for their insightful comments and valuable suggestions. This research work is supported by the National Natural Science Foundation of China under Grants no. U1936207, 62122077 and 62106251.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyu Lin or Xianpei Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Lin, H., Han, X., Sun, L. (2023). SentBench: Comprehensive Evaluation of Self-Supervised Sentence Representation with Benchmark Construction. In: Sun, M., et al. Chinese Computational Linguistics. CCL 2023. Lecture Notes in Computer Science(), vol 14232. Springer, Singapore. https://doi.org/10.1007/978-981-99-6207-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6207-5_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6206-8

  • Online ISBN: 978-981-99-6207-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics