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Abstract

Multi-Hop Question Answering (MHQA) is a significant area in question answering, requiring
multiple reasoning components, including document retrieval, supporting sentence prediction,
and answer span extraction. In this work, we analyze the primary factors limiting the perfor-
mance of multi-hop reasoning and introduce label smoothing into the MHQA task. This is aimed
at enhancing the generalization capabilities of MHQA systems and mitigating overfitting of an-
swer spans and reasoning paths in training set. We propose a novel label smoothing technique, F1
Smoothing, which incorporates uncertainty into the learning process and is specifically tailored
for Machine Reading Comprehension (MRC) tasks. Inspired by the principles of curriculum
learning, we introduce the Linear Decay Label Smoothing Algorithm (LDLA), which progres-
sively reduces uncertainty throughout the training process. Experiment on the HotpotQA dataset
demonstrates the effectiveness of our methods in enhancing performance and generalizability in
multi-hop reasoning, achieving new state-of-the-art results on the leaderboard.

1 Introduction

Multi-Hop Question Answering (MHQA) is a rapidly evolving research area within question answer-
ing that involves answering complex questions by gathering information from multiple sources (Asai et
al., 2020; Chen et al., 2021). This requires a model capable of performing several reasoning steps and
handling diverse information sources (Mavi et al., 2022). In recent years, MHQA has attracted signifi-
cant interest from researchers due to its potential for addressing real-world problems. The mainstream
approach to MHQA typically incorporates several components, including a document retriever, a sup-
porting sentence selector, and a reading comprehension module (Tu et al., 2020; Li et al., 2022). These
components collaborate to accurately retrieve and integrate relevant information from multiple sources,
ultimately providing a precise answer to the given question (Feldman and El-Yaniv, 2019).

MHQA models have shown remarkable capabilities in multi-hop reasoning. However, they still strug-
gle with answer span errors and multi-hop reasoning errors. A recent study by S2G (Wu et al., 2021)
reveals that the primary error source is answer span errors, constituting 74.55%, followed by multi-hop
reasoning errors. We identify that answer span errors arise from differences in the annotation of answer
spans between the training and validation sets. As depicted in Figure 1, the training set answer includes
the quantifier “times”, which is notably missing in the validation set. We observe that such discrepancies
in answer spans are prevalent across both the training and validation sets. This demands that models
possess a robust ability to generalize answer spans, thereby preventing overfitting to a specific answer
span distribution present in the training set.

Furthermore, we discover the existence of unannotated yet feasible multi-hop reasoning paths within
the training set. As depicted in Figure 2, a non-gold document “Tysons, Virginia” contains essential
information to deduce the answer “Fairfax County”, but is marked as irrelevant. During training, this
forces the model to ignore such reasoning paths and solely rely on the annotated ones. This potentially
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Gold Doc1: Love or Leave
"Love or Leave" was the Lithuanian entry in the Eurovision Song Contest
2007, performed in English by 4FUN.

Gold Doc1: Binocular (horse)
"Love or Leave" was the Lithuanian entry in the Eurovision Song Contest
2007, performed in English by 4FUN.

Gold Doc2: Tony McCoy
Based in Ireland and the UK, McCoy rode a record 4,358 winners, and was
Champion Jockey a record 20 consecutive times, every year he was a
professional.

Question: The primary jockey of Binocular was Champion Jockey how
many consecutive times?
Answer: 20

Gold Doc2: Lithuania in the Eurovision Song Contest
Lithuania has participated in the Eurovision Song Contest (known in
Lithuania as "Eurovizija") 18 times since its debut in 1994, where Ovidijus
Vyšniauskas finished last, receiving nul points.

Question: How many times does the song writer of "Love or Leave" have
participated in the Eurovision Song Contest?
Answer: 18 times

Validation Set:

Training Set:

Figure 1: Different Answer Span.

Gold Doc1: Tysons Galleria
(1) Tysons Galleria is a three-level super-regional mall owned by General 

Growth Properties located at 2001 International Drive, McLean, Virginia, 
in Tysons Corner.

Non-Gold Doc: Tysons, Virginia
(1) Tysons, or formerly “Tysons Corner” is a census-designated place (CDP) 

and unincorporated community …
(2) Located in Northern Virginia between the community of McLean and the 

town of Vienna along the Capital Beltway (I-495), …
(3)Tysons is home to two super-regional shopping malls—Tysons Corner 

Center and Tysons Galleria—and the corporate headquarters of numerous 
companies such as Intelsat, Gannett, Hilton Worldwide, Freddie Mac, 
Capital One and Booz Allen Hamilton.

(4) Tysons is Fairfax County's central business district and a regional 
commercial center.

Question: Tysons Galleria is located in what county?
Answer: Fairfax County
Evidence Sentences: ["McLean, Virginia", 0], ["Tysons Galleria",0]

Gold Doc2: McLean, Virginia
(1) McLean ( ) is a census-designated place (CDP) in Fairfax County in 

Northern Virginia.

Figure 2: Multiple Feasible Reasoning Paths.

Figure 3: Causes of errors in answer span and multi-hop reasoning in the HotpotQA dataset (Yang et
al., 2018). In Figure 1, the answer from the training set contains a quantifier, while the answer from
the validation set does not. In Figure 2, the correct answer can be inferred using a non-gold document
without requiring information from gold document.

leads models to overfit specific multi-hop reasoning patterns labeled in the training set, consequently
impairing their generalization capabilities on test sets. Hence, these observations naturally lead us to the
research question we explore in this paper: How can we prevent MHQA models from overfitting answer
spans and reasoning paths in the training set?

Label smoothing has proven to be a highly effective technique for mitigating overfitting (Müller et al.,
2019; Lukasik et al., 2020a; Xu et al., 2020), and it has been extensively employed across a diverse range
of machine learning researches (Szegedy et al., 2016; Yuan et al., 2020; Li et al., 2020). In this study,
we pioneer the application of label smoothing to multi-hop reasoning tasks, aiming to reduce overfitting
of answer spans and reasoning paths. Our proposed MHQA model, termed R3, integrates three key
components: Retrieval, Refinement, and Reading Comprehension.

Inspired by the F1 score, a widely used metric for evaluating Machine Reading Comprehension (MRC)
task performance, we develop F1 Smoothing, a novel technique that calculates the importance of each
token within the smooth distribution. Moreover, we incorporate curriculum learning (Bengio et al., 2009)
and devise the Linear Decay Label Smoothing Algorithm (LDLA), which gradually reduces the smooth-
ing weight, allowing the model to focus on more challenging samples during training. Experimental
results on the HotpotQA dataset (Yang et al., 2018) demonstrate that incorporating F1 smoothing and
LDLA into the R3 model significantly enhances performance in document retrieval, supporting sentence
prediction, and answer span extraction, achieving new state-of-the-art results among all published works.
Our main contributions are as follows:

• To our best knowledge, we are the first to adapt label smoothing for multi-hop reasoning tasks, en-
capsulated within our innovative R3 framework, featuring retrieval, refinement, and reading com-
prehension modules.

• We propose F1 smoothing, a pioneering label smoothing method tailored for MRC tasks, which
alleviates errors caused by answer span discrepancies.

• We present the Linear Decay Label Smoothing Algorithm (LDLA), an innovative approach that
combines the principles of curriculum learning for progressive training.

• Experiment on the HotpotQA dataset demonstrates that label smoothing effectively enhances the
MHQA model’s performance, achieving new state-of-the-art performance on the leaderborad.
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2 Related Work

Label Smoothing. Label smoothing is a regularization technique first introduced in computer vision to
improve classification accuracy on ImageNet (Szegedy et al., 2016). The basic idea of label smoothing is
to soften the distribution of true labels by replacing their one-hot encoding with a smoother distribution.
This approach encourages the model to be less confident in its predictions and consider a broader range
of possibilities, reducing overfitting and enhancing generalization (Pereyra et al., 2017; Müller et al.,
2019; Lukasik et al., 2020a). Label smoothing has been widely adopted across various natural language
processing tasks, including speech recognition (Chorowski and Jaitly, 2017), document retrieval (Penha
and Hauff, 2021), dialogue generation (Saha et al., 2021), and neural machine translation (Gao et al.,
2020; Lukasik et al., 2020b; Graça et al., 2019).

Recent studies are increasingly concentrating on enhancing and refining the conventional methods of
label smoothing. For example, Xu et al. (2020) suggest the Two-Stage LAbel (TSLA) smoothing al-
gorithm, which employs a smoothing distribution in the first stage and the original distribution in the
second stage. Experimental results demonstrate that TSLA effectively promotes training convergence
and enhances performance. Penha and Hauff (2021) introduce label smoothing for retrieval tasks and
propose using BM25 to compute the label smoothing distribution, which outperforms the uniform distri-
bution. Zhao et al. (2020) propose Word Overlapping, which uses maximum likelihood estimation (Su
et al., 2020) to optimize the target distribution during training.

Multi-hop Question Answering. Multi-hop reading comprehension (MHRC) is a challenging task in
the field of machine reading comprehension (MRC) that closely resembles the human reasoning process
in real-world scenarios. Consequently, it has gained significant attention in the field of natural language
understanding in recent years. Several datasets have been developed to foster research in this area,
including HotpotQA (Yang et al., 2018), WikiHop (Welbl et al., 2018), and NarrativeQA (Kočiský et al.,
2018). Among these, HotpotQA (Yang et al., 2018) is particularly representative and challenging, as it
requires the model to not only extract the correct answer span from the context but also identify a series
of supporting sentences as evidence for MHRC.

Recent advances in MHRC have led to the development of several graph-free models, such as
QUARK (Groeneveld et al., 2020), C2FReader (Shao et al., 2020), and S2G (Wu et al., 2021), which have
challenged the dominance of previous graph-based approaches like DFGN (Qiu et al., 2019), SAE (Tu
et al., 2020), and HGN (Fang et al., 2020). C2FReader (Shao et al., 2020) suggests that the performance
difference between graph attention and self-attention is minimal, while S2G’s (Wu et al., 2021) strong
performance demonstrates the potential of graph-free modeling in MHRC. FE2H (Li et al., 2022), which
uses a two-stage selector and a multi-task reader, significantly enhances the performance on HotpotQA,
indicating that pre-trained language models are sufficient for modeling multi-hop reasoning. However,
these approaches still suffer from answer spanning errors and multi-hop reasoning errors, primarily at-
tributable to their restricted generalization abilities in multi-hop reasoning.

3 Framework

Figure 4 depicts the overall architecture of R3. The retrieval module sift through and exclude irrelevant
documents, effectively selecting those that are pertinent to the question for utilization in the subsequent
modules. In this example, Document 1, 3, and 4 are selected due to their higher relevance scores, while
the other documents are filtered out. Subsequently, the refinement module further selects documents
based on their combined relevance. In this case, Document 1 and 4 are chosen. Following this, the ques-
tion and Document 1 and 4 are concatenated and used as input for the reading comprehension module.
Within the reading comprehension module, we employ a multi-task approach to simultaneously train for
supporting sentence prediction, answer span extraction, and answer type selection.

3.1 Retrieval Module

In the retrieval module, each question Q is typically accompanied by a set of M documents
D1, D2 . . . , DM , but only C, |C| << M (two in HotpotQA) are labeled as relevant to the question Q.
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Figure 4: Overview of our R3 model, which consists of three main modules: Retrieval, Refinement, and
Reading Comprehension. R3 sequentially executes each module to arrive at the final answer.

We model the retrieval process as a binary classification task. Specifically, for each question-document
pair, we generate an input by concatenating “[CLS], question, [SEP], document, [SEP]” in sequence. We
then feed the [CLS] token output from the model into a linear classifier. Lretrieve represents the cross-
entropy between the predicted probability and the gold label. In contrast to S2G (Wu et al., 2021), which
employs a complex pairwise learning-to-rank loss, we opt for a simple binary cross-entropy loss, as it
maintains high performance while being significantly more efficient.

Lretrieve = E[− 1

M

M∑
i=1

(yretrieve
i · log(ŷretrieve

i ) + (1− yretrieve
i ) · log(1− ŷretrieve

i ))], (1)

where ŷretrieve
i is the probability predicted by the model and yretrieve

i is the ground-truth label. M is the
number of provided documents. E means the expectation of all samples.

yretrieve
i =

{
1 Di is a gold document.
0 Di is a non-gold document.

(2)

3.2 Refinement Module
The refinement module is designed to identify document combinations that are capable of supporting
the entire multi-hop reasoning processes. We combine the K documents obtained from the retrieval
module to form C2

K document pairs. These are concatenated into the following sequence: “[CLS],
question, [SEP], document1, [SEP], document2, [SEP]”. Similar to the retrieval module, we extract the
[CLS] token output from the model and pass it through a classifier. Document pairs containing two gold
documents are labeled as 1, while others are labeled as 0. We model multi-hop reasoning as a selection
task, focusing on choosing document combinations that effectively convey complete multi-hop reasoning
information to the subsequent modules.

Lrefine = E[−
C2

K∑
i=1

yrefine
i log(ŷrefine

i )], (3)
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where ŷrefine
i is predicted document pair probability and yrefine

i is the ground-truth label, C2
K is number of

all combination.

yrefine
i =

{
1 Ci consists of two gold documents.
0 otherwise.

(4)

We use a single pretrained language model as the encoder for both the retrieval and refinement module,
and the final loss is a weighted sum of Lretrieve and Lrefine. λ1 and λ2 are accordingly coefficients of
Lretrieve and Lrefine .

Ltotal = λ1Lretrieve + λ2Lrefine. (5)

3.3 Reading Comprehension Module
In the reading comprehension module, we use multi-task learning to simultaneously predict supporting
sentences and extract answer span. HotpotQA (Yang et al., 2018) contains samples labeled as “yes” or
“no”. The practice of splicing “yes” or “no” tokens at the beginning of the sequence (Li et al., 2022)
could corrupt the original text’s semantic information. To avoid the impact of irrelevant information, we
introduce an answer type selection header trained with a cross-entropy loss function.

Ltype = E[−
3∑

i=1

y
type
i log(ŷ

type
i )], (6)

where ŷtype
i represents the predicted probability of answer type generated by our model, and y

type
i denotes

the ground-truth label. Answer type includes “yes”, “no” and “span”.

y
type
i =


0 Answer is no.
1 Answer is yes.
2 Answer is a span.

(7)

To extract the span of answers, we use a linear layer on the contextual representation to identify the
start and end positions of answers, and adopts cross-entropy as the loss function. The corresponding loss
terms are denoted as Lstart and Lend respectively. Similar to previous work S2G (Wu et al., 2021) and
FE2H (Li et al., 2022), we also inject a special placeholder token < /e > and use a linear binary classifier
on the output of < /e > to determine whether a sentence is a supporting fact. The classification loss of
the supporting facts is denoted as Lsup, and we jointly optimize all of these objectives in our model.

Lreading = λ3Ltype + λ4(Lstart + Lend) + λ5Lsup. (8)

4 Label Smoothing

Label smoothing is a regularization technique that aims to improve generalization in a classifier by mod-
ifying the ground truth labels of the training data. In the one-hot setting, the probability of the correct
category q(y|x) for a training sample (x, y) is typically defined as 1, while the probabilities of all other
categories q(⌝y|x) are defined as 0. The cross-entropy loss function used in this setting is typically
defined as follows:

L = −
K∑
k=1

q(k|x) log(p(k|x)), (9)

where p(k|x) is the probability of the model’s prediction for the k-th class. Specifically, label smoothing
mixes q(k|x) with a uniform distribution u(k), independent of the training samples, to produce a new
distribution q′(k|x).

q′(k|x) = (1− ϵ)q(k|x) + ϵu(k), (10)

where ϵ is the weight controls the importance of q(k|x) and u(k) in the resulting distribution. u(k) is
construed as 1

K of the uniform distribution, where K is the total number of categories. Next, we introduce
two novel label smoothing methods.
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Algorithm 1 Linear Decay Label Smoothing.

Require: Training epochs n > 0; Smoothing weight ϵ ∈ [0, 1]; Decay rate τ ∈ [0, 1]; Uniform distribu-
tion u

1: Initialize: Model parameter w0 ∈ W;
2: Input: Optimization algorithm A
3: for i = 0, 1, . . . , n do
4: ϵi ← ϵ− iτ
5: if ϵi < 0 then
6: ϵi ← 0
7: end if
8: sample(xt, yt)
9: yLSt ← (1− ϵi)yi + ϵu

10: wi+1 ← A−step(wi;xi, y
LS
i )

11: end for

4.1 Linear Decay Label Smoothing

Our proposed Linear Decay Label Smoothing Algorithm (LDLA) addresses the abrupt changes in train-
ing distribution caused by the two-stage approach of TSLA, which can negatively impact the training
process. Compared to TSLA, LDLA progressively decays the smoothing weight at a constant rate per
epoch, which facilitates a more gradual learning process.

Given a total of n epochs in the training process and a decay size of τ , the smoothing weight ϵ for the
i-th epoch can be calculated as follows:

ϵi =

{
ϵ− iτ ϵ− iτ ≥ 0

0 ϵ− iτ < 0
(11)

Algorithm 1 provides a detailed overview of the LDLA algorithm. LDLA employs the concept of
curriculum learning by gradually transitioning the model’s learning target from a smoothed distribution to
the original distribution throughout the training process. This approach methodically reduces uncertainty
during training, enabling the model to progressively concentrate on more challenging samples. The
gradual shift from learning under conditions of uncertainty to a state of certainty ensures the stability of
the learning process. As a result, the LDLA algorithm facilitates a learning process that is more stable
and efficient.

4.2 F1 Smoothing

Unlike traditional classification tasks, MRC requires identifying both the start and end positions of a
span. To address the specific nature of this task, a specialized smoothing method is required to prevent
overfitting the specific answer span distribution in the training set. In this section, we introduce F1
Smoothing, a technique that calculates the significance of answer span based on its F1 score.

Consider a sample x that contains a context S and an answer agold. The total length of the context
is denoted by L. We use qs(t|x) to denote the F1 score between a span of arbitrary length starting at
position t in S and the ground truth answer agold. Similarly, qe(t|x) denotes the F1 score between agold
and a span of arbitrary length ending at position t in S .

qs(t|x) =
L−1∑
ξ=t

F1
(
(t, ξ), agold

)
. (12)

qe(t|x) =
t∑

ξ=0

F1
(
(ξ, t), agold

)
. (13)
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a massacre in which 35 people were killed… …
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a massacre in which 35 people were killed… … a massacre in which 35 people were killed… … a massacre in which 35 people were killed… …
(a1) Original start distribution. (b1) Label Smoothing start distribution. (c1) Word Overlapping start distribution. (d1) F1 Smoothing start distribution.

(a2) Original end distribution.

a massacre in which 35 people were killed… …
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a massacre in which 35 people were killed… … a massacre in which 35 people were killed… …
(c2) Word Overlapping end distribution.

a massacre in which 35 people were killed… …
(d2) F1 Smoothing end distribution.
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(b1) Label Smoothing end distribution.
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Figure 5: Visualization of original distribution and different label smoothing distributions, including
Label Smoothing, Word Overlapping, and F1 Smoothing. The first row shows the distribution of the
start token, and the second row shows the distribution of the end token. The gold start and end tokens
are highlighted in red.

The normalized distributions are noted as q
′
s(t|x) and q

′
e(t|x), respectively.

q
′
s(t|x) =

exp(qs(t|x))∑L−1
i=0 exp(qs(i|x))

. (14)

q
′
e(t|x) =

exp(qe(t|x))∑L−1
i=0 exp(qe(i|x))

. (15)

To decrease the computational complexity of F1 Smoothing, we present a computationally efficient
version in Appendix 7.2. Previous research (Zhao et al., 2020) has investigated various label smoothing
methods for MRC, encompassing traditional label smoothing and word overlap smoothing. As illustrated
in Figure 5, F1 Smoothing offers a more accurate distribution of token importance in comparison to Word
Overlap method. This method reduces the probability of irrelevant tokens and prevents the model from
being misled during training.

5 Experiment

5.1 Dataset
We evaluate our approach on the distractor setting of HotpotQA (Yang et al., 2018), a multi-hop question-
answer dataset with 90k training samples, 7.4k validation samples, and 7.4k test samples. Each question
in this dataset is provided with several candidate documents, two of which are labeled as gold. In addi-
tion, HotpotQA also provides supporting sentences for each question, encouraging the model to explain
the reasoning path of the multi-hop question answering. We use the Exact Match (EM) and F1 score
(F1) to evaluate the performance of our approach in terms of document retrieval, supporting sentence
prediction, and answer extraction.

5.2 Implementation Details
Our model is built using the Pre-trained Language Models (PLMs) provided by HuggingFace’s Trans-
formers library (Wolf et al., 2020).

Retrieval and Refinement Module. We use RoBERTa-large (Liu et al., 2019) and ELECTRA-
large (Clark et al., 2020) as our PLMs and conduct an analysis on RoBERTa-large (Liu et al., 2019)
in Section 5.4. Training on a single RTX3090 GPU, we set the number of epochs to 8 and the batch size
to 16. We employ the AdamW (Loshchilov and Hutter, 2017) optimizer with a learning rate of 5e-6 and
a weight decay of 1e-2.
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Model Answer Supporting
EM F1 EM F1

Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49
QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86
C2F Reader (Shao et al., 2020) 67.98 81.24 60.81 87.63
HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47
FE2H on ELECTRA (Li et al., 2022) 69.54 82.69 64.78 88.71
AMGN+ (Li et al., 2021) 70.53 83.37 63.57 88.83
S2G+EGA (Wu et al., 2021) 70.92 83.44 63.86 88.68
FE2H on ALBERT (Li et al., 2022) 71.89 84.44 64.98 89.14
R3 (ours) 71.27 83.57 65.25 88.98
Smoothing R3 (ours) 72.07 84.34 65.44 89.55

Table 1: In the distractor setting of the HotpotQA test set, our proposed F1 Smoothing and LDLA
has led to significant improvements in the performance of the Smoothing R3 model compared to the
R3 model. Furthermore, the Smoothing R3 model has outperformed a series of strong baselines and
achieved remarkable state-of-the-art performance.

Model EM F1
SAElarge (Tu et al., 2020) 91.98 95.76
S2Glarge (Wu et al., 2021) 95.77 97.82
FE2Hlarge (Li et al., 2022) 96.32 98.02
R3 (ours) 96.50 98.10
Smoothing R3 96.85 98.32

Table 2: Comparison of our R3 and Smoothing R3 model with several strong baselines in document
retrieval task on HotpotQA validation set. Smoothing R3 model demonstrates further performance en-
hancement compared to R3.

Reading Comprehension Module. We employ RoBERTa-large (Liu et al., 2019) and DeBERTa-v2-
xxlarge (He et al., 2021) as our Pre-trained Language Models (PLMs), with our analyses primarily con-
ducted using RoBERTa-large (Liu et al., 2019). To train RoBERTa-large, we use an RTX3090 GPU,
setting the number of epochs to 16 and the batch size to 16. For the larger DeBERTa-v2-xxlarge model,
we employ an A100 GPU, setting the number of epochs to 8 and the batch size to 16. We use the AdamW
optimizer (Loshchilov and Hutter, 2017) with a learning rate of 4e-6 for RoBERTa-large and 2e-6 for
DeBERTa-v2-xxlarge, along with a weight decay of 1e-2 for optimization.

5.3 Experimental Results

We utilize ELECTRA-large (Clark et al., 2020) as the PLM for the retrieval and refinement modules, and
DeBERTa-v2-xxlarge for the reading comprehension module. The R3 model incorporating F1 Smooth-
ing and LDLA methods is referred to as Smoothing R3. LDLA is employed for document retrieval and
supporting sentence prediction, while F1 Smoothing is applied for answer span extraction. As shown in
Table 1, compared to a series of previous strong baselines, Smoothing R3 has achieved the best perfor-
mance on the stringent Exact Match (EM) metric. Additionally, compared to R3, Smoothing R3 shows
an improvement of 0.8% and 0.77% in EM and F1 scores for the answer extraction task. For the support-
ing sentence prediction task, there is an increase of 0.19% and 0.57% in EM and F1 scores. These results
indicate that label smoothing effectively enhances the model’s performance across various metrics.

Document Retrieval. We compare the performance of our retrieval and refinement module, using
ELECTRA-large as a backbone, to three advanced methods: SAE (Tu et al., 2020), S2G (Wu et al.,
2021), and FE2H (Li et al., 2022). These methods employ sophisticated selectors for retrieving relevant
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Figure 6: Performance comparison of a series of
smoothing methods in document retrieval task.
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Figure 7: Comparison of various smoothing meth-
ods in supporting sentence prediction task.

Model Answer Supporting
EM F1 EM F1

SAE 67.70 80.75 63.30 87.38
S2G 70.80 - 65.70 -
R3 71.39 83.84 66.32 89.54

Smoothing R3 71.89 84.65 66.75 90.08

Table 3: Comparison of cascade results between our method and several previous methods on the vali-
dation set of HotpotQA.

documents. We evaluate the performance of document retrieval using the EM and F1 metrics. Table 2
demonstrates that our R3 method outperforms these three strong baselines, with Smoothing R3 further
enhancing performance.

Supporting Sentence Prediction and Answer Span Extraction. In Table 3, we evaluate the perfor-
mance of the reading comprehension module, which employs DeBERTa-v2-xxlarge (He et al., 2021)
as the backbone, on documents retrieved by the retrieval and refinement module. Our R3 model out-
performs strong baselines SAE and S2G, and further improvements are achieved by incorporating F1
Smoothing and LDLA. These results emphasize the potential for enhancing performance through the
application of label smoothing techniques.

5.4 Label Smoothing Analysis
In our analysis of label smoothing, we use RoBERTa-large (Liu et al., 2019) as the backbone. To ensure
the reliability of our experimental results, we conduct multiple runs with different random number seeds
(41, 42, 43, and 44).

In our experiments, we compare three label smoothing methods: Label Smoothing (LS), Two-Stage
Label smoothing (TSLA), and Linear Decay Label smoothing (LDLA). The initial value of ϵ in our
experiments was 0.1, and in the first stage of TSLA, the number of epochs was set to 4. For each epoch
in LDLA, ϵ was decreased by 0.01.

Document Retrieval. As shown in Figure 6, label smoothing effectively enhances the generalization
performance of the retrieval module. LDLA label smoothing approach has more effectively enhanced
the model’s performance in document retrieval tasks compared to other label smoothing methods.

Supporting Sentence Prediction. We assess the impact of label smoothing on the supporting sentence
prediction task. As illustrated in Figure 7, we observe that label smoothing and the TSLA method do not
exhibit significant advantages over the baseline and even lead to decreased performance. In contrast, our
proposed LDLA method effectively improves the model’s performance in the sentence prediction task.
This demonstrates the broader task applicability and effectiveness of the LDLA method.

Answer Span Extraction. The impact of label smoothing methods on answer span extraction in the
reading comprehension module is depicted in Figure 8. Compared to the baseline, methods such as la-
bel smoothing, TSLA, and LDLA can mitigate the performance decline caused by overfitting, thereby
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Figure 8: Analysis of different label smoothing methods in answer span extraction task.

Model Answer Span Errors Multi-Hop Reasoning Errors
S2G 1612 550
R3 1556 562

Smoothing R3 1536 (↓ 1.3%) 545(↓ 3.0%)

Table 4: Error analysis on Answer Span Errors and Multi-hop Reasoning Errors.

enhancing the model’s performance. F1 Smoothing shows a significant improvement over label smooth-
ing, TSLA, and LDLA, and also has a notable advantage over the Word Overlapping method. This
indicates that F1 Smoothing, by assigning appropriate weights to different tokens in a sentence, more
effectively and precisely calculates the suitable target distribution, thereby significantly improving the
model’s performance in answer span extraction tasks.

5.5 Error Analysis

To more comprehensively understand the role of label smoothing in enhancing model performance, our
analysis delves into the model’s outputs on the validation set, with a particular emphasis on answer span
and multi-hop reasoning errors. These errors are defined as follows:

• Answer Span Errors: Occur when the model’s predicted answer and the ground truth answer share
some overlap (after excluding stop words) but are not entirely the same.

• Multi-hop Reasoning Errors: Arise when the model’s reasoning process leads to a predicted answer
that is entirely different from the ground truth answer.

The implementation of label smoothing has led to notable improvements, as detailed in Table 4.
Specifically, Smoothing R3 achieved a 1.3% reduction in answer span errors, decreasing from 1556
to 1536 instances, and a 3.0% decrease in multi-hop reasoning errors, reducing the count from 562 to
545. These reductions in both error types are significant when compared to the performance of the
S2G model. This evidence strongly suggests that label smoothing, when integrated during training, can
prevent the model from excessively fitting to specific answer spans and reasoning pathways found in
the training set. Consequently, this leads to enhanced generalization capabilities and improved overall
performance of the model.

6 Conclusion

In this study, we first identify the primary challenges hindering the performance of MHQA systems and
propose using label smoothing to mitigate overfitting issues during MHQA training. We introduce F1
smoothing, a novel smoothing method inspired by the widely-used F1 score in MRC tasks. Additionally,
we present LDLA, a progressive label smoothing algorithm that incorporates the concept of curriculum
learning. Comprehensive experiments on the HotpotQA dataset demonstrate that our proposed model,
Smoothing R3, achieves significant performance improvement when using F1 smoothing and LDLA.
Further analysis indicates that label smoothing is a valuable technique for MHQA, effectively improving
the model’s generalization while minimizing overfitting to particular patterns in the training set.
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7 Appendix A

7.1 Implementation Details
Our Github repository showcases more details and specific implementations.

7.2 Efficient F1 Smoothing
In order to alleviate the complexity introduced by multiple for loops in the F1 Smoothing method, we
have optimized Eq. (12) and Eq. (13). We use La = e∗−s∗+1 and Lp = e−s+1 to denote respectively
the length of gold answer and predicted answer.

qs(t|x) =
L−1∑
ξ=t

F1
(
(t, ξ), agold

)
. (16)

If t < s∗, the distribution is

qs(t|x) =
e∗∑

ξ=s∗

2(ξ − s∗ + 1)

Lp + La
+

L−1∑
ξ=e∗+1

2La

Lp + La
, (17)

else if s∗ ≤ t ≤ e∗, we have the following distribution

qs(t|x) =
e∗∑
ξ=s

2Lp

Lp + La
+

L−1∑
ξ=e∗+1

2(e∗ − s+ 1)

Lp + La
. (18)

In equation 17 and 18, Lp = e− i+ 1.
We can get qe(t|x) similarly. If t > e∗,

qe(t|x) =
e∗∑

ξ=s∗

2(e∗ − ξ + 1)

Lp + La
+

s∗−1∑
ξ=0

2La

Lp + La
, (19)

else if s∗ ≤ t ≤ e∗,

qe(t|x) =
e∑

ξ=s∗

2Lp

Lp + La
+

s∗−1∑
ξ=0

2(e− s∗ + 1)

Lp + La
. (20)

In equation 19 and 20, Lp = i− s+ 1.

https://github.com/yinzhangyue/Smoothing-R3

