Skip to main content

Rule-Enhanced Evolutional Dual Graph Convolutional Network for Temporal Knowledge Graph Link Prediction

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14094))

Included in the following conference series:

  • 618 Accesses

Abstract

The aim of link prediction over temporal knowledge graphs is to discover new facts by capturing the interdependencies between historical facts. Embedding-based methods learn the interdependencies into low-dimentional vector space while rule-based methods mine logic rules that can precisely infer missing facts. However, most of the embedding-based methods divide the temporal knowledge graph into a snapshot sequence with timestamps which increases the inherent lack of information, and the structural dependency of relations is often overlooked, which is crucial for learning high-quality relation embeddings. To address these challenges, we introduce a novel Rule-enhanced Evolutional Dual Graph Convolutional Network, called RED-GCN, which leverages rule learning to enhance the density of information via inferring and injecting new facts into every snapshot, and an evolutional dual graph convolutional network is employed to capture the structural dependency of relations and the temporal dependency across adjacent snapshots. We conduct experiments on four real-world datasets. The results demonstrate that our model outperforms the baselines, and enhancing information in snapshots is beneficial to learn high-quality embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26: 27th Annual Conference on Neural Information Processing Systems 2013, pp. 2787–2795 (2013)

    Google Scholar 

  2. Chen, L., Tang, X., Chen, W., Qian, Y., Li, Y., Zhang, Y.: DACHA: a dual graph convolution based temporal knowledge graph representation learning method using historical relation. ACM Trans. Knowl. Discov. Data 16(3), 46:1–46:18 (2022). https://doi.org/10.1145/3477051

  3. Cheng, K., Liu, J., Wang, W., Sun, Y.: Rlogic: recursive logical rule learning from knowledge graphs. In: KDD, pp. 179–189 (2022)

    Google Scholar 

  4. Erxleben, F., Günther, M., Krötzsch, M., Mendez, J., Vrandečić, D.: Introducing wikidata to the linked data web. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 50–65. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_4

    Chapter  Google Scholar 

  5. Han, Z., Chen, P., Ma, Y., Tresp, V.: Dyernie: dynamic evolution of Riemannian manifold embeddings for temporal knowledge graph completion. In: EMNLP, pp. 7301–7316 (2020)

    Google Scholar 

  6. Han, Z., Ma, Y., Wang, Y., Günnemann, S., Tresp, V.: Graph Hawkes neural network for forecasting on temporal knowledge graphs. In: Conference on Automated Knowledge Base Construction (2020)

    Google Scholar 

  7. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inferenceover temporal knowledge graphs. In: EMNLP, pp. 6669–6683 (2020)

    Google Scholar 

  8. Lee, Y., Lee, J., Lee, D., Kim, S.: THOR: self-supervised temporal knowledge graph embedding via three-tower graph convolutional networks. In: ICDM, pp. 1035–1040 (2022)

    Google Scholar 

  9. Leetaru, K., Schrodt, P.A.: Gdelt: global data on events, location, and tone, 1979–2012. In: ISA Annual Convention, vol. 2, pp. 1–49. Citeseer (2013)

    Google Scholar 

  10. Li, W., Peng, R., Li, Z.: Knowledge graph completion by jointly learning structural features and soft logical rules. IEEE Trans. Knowl. Data Eng. 35(3), 2724–2735 (2023). https://doi.org/10.1109/TKDE.2021.3108224

    Article  Google Scholar 

  11. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: SIGIR, pp. 408–417 (2021)

    Google Scholar 

  12. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: A knowledge base from multilingual wikipedias. In: CIDR (2015)

    Google Scholar 

  13. O’Brien, S.P.: Crisis early warning and decision support: contemporary approaches and thoughts on future research. Int. Stud. Rev. 1, 87–104 (2010)

    Article  Google Scholar 

  14. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  15. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: AAAI, pp. 3060–3067 (2019)

    Google Scholar 

  16. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)

    Google Scholar 

  17. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: ICML, vol. 70, pp. 3462–3471. PMLR (2017)

    Google Scholar 

  18. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, vol. 48, pp. 2071–2080. JMLR.org (2016)

    Google Scholar 

  19. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020)

    Google Scholar 

  20. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)

    Google Scholar 

  21. Zhang, J., Shen, D., Nie, T., Kou, Y.: Multi-view based entity frequency-aware graph neural network for temporal knowledge graph link prediction. In: Web Information Systems and Applications - 19th International Conference, WISA, vol. 13579, pp. 102–114 (2022). https://doi.org/10.1007/978-3-031-20309-1_9

  22. Zhang, W., et al.: Iteratively learning embeddings and rules for knowledge graph reasoning. In: WWW, pp. 2366–2377 (2019)

    Google Scholar 

  23. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhang, Y.: Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks. In: AAAI, pp. 4732–4740 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (62172082, 62072084, 62072086), the Fundamental Research Funds for the central Universities (N2116008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhai, H., Cao, X., Sun, P., Shen, D., Nie, T., Kou, Y. (2023). Rule-Enhanced Evolutional Dual Graph Convolutional Network for Temporal Knowledge Graph Link Prediction. In: Yuan, L., Yang, S., Li, R., Kanoulas, E., Zhao, X. (eds) Web Information Systems and Applications. WISA 2023. Lecture Notes in Computer Science, vol 14094. Springer, Singapore. https://doi.org/10.1007/978-981-99-6222-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6222-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6221-1

  • Online ISBN: 978-981-99-6222-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics