Skip to main content

Admittance Control for Robot Polishing Force Tracking Based on Reinforcement Learning

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14272))

Included in the following conference series:

  • 1136 Accesses

Abstract

To achieve a stable interaction between the robot and the environment, stable force control of the robot is required. In this paper, a position-based impedance adaptive controller is proposed. The proposed method tracks the expected contact force based on estimating the parameters of the environment. Within this framework, we analyze environmental parameter estimation, introduce an adaptive algorithm based on reinforcement learning to adjust control parameters, and verify the stability of the system based on the Routh criterion and Lyapunov equation. The collaborative robot for workpieces with different surfaces is used for polishing. The controller is constructed to adjust the reference trajectory and use reinforcement learning training to adaptively adjust the control parameters to reduce the force error. Polishing experiments were carried out on the UR16e robot, and constant force control was carried out on beveled and curved workpieces. The proposed method improved the tracking accuracy of the robot polishing task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Realyvásquez-Vargas, A., Arredondo-Soto, K.C., García-Alcaraz, J.L., Márquez-Lobato, B.Y., Cruz-García, J.: Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company. Rob. Comput.-Integr. Manuf. 57, 315–328 (2019). https://doi.org/10.1016/j.rcim.2018.12.015

    Article  Google Scholar 

  2. Brinksmeier, E., et al.: Advances in modeling and simulation of grinding processes. CIRP Ann. 55, 667–696 (2006). https://doi.org/10.1016/j.cirp.2006.10.003

    Article  Google Scholar 

  3. Han, B., Zoppi, M., Molfino, R.: Variable impedance actuation using biphasic media. Mech. Mach. Theor. 62, 1–12 (2013). https://doi.org/10.1016/j.mechmachtheory.2012.11.001

    Article  Google Scholar 

  4. Xu, Z., Li, S., Zhou, X., Cheng, T.: Dynamic neural networks based adaptive admittance control for redundant manipulators with model uncertainties. Neurocomputing 357, 271–281 (2019). https://doi.org/10.1016/j.neucom.2019.04.069

    Article  Google Scholar 

  5. Neville, H.: Impedance control: an approach to manipulation: Part I~ III. Trans. ASME J. Dyn. Syst. Measur. Control 107, 1 (1985). https://doi.org/10.23919/ACC.1984.4788393

  6. Cao, H., Chen, X., He, Y., Zhao, X.: Dynamic adaptive hybrid impedance control for dynamic contact force tracking in uncertain environments. IEEE Access 7, 83162–83174 (2019). https://doi.org/10.1109/access.2019.2924696

    Article  Google Scholar 

  7. Li, Z., Huang, H., Song, X., Xu, W., Li, B.: A fuzzy adaptive admittance controller for force tracking in an uncertain contact environment. IET Control Theor. Appl. 15, 2158–2170 (2021). https://doi.org/10.1049/cth2.12175

    Article  Google Scholar 

  8. Luo, Z., Li, J., Bai, J., Wang, Y., Liu, L.: Adaptive hybrid impedance control algorithm based on subsystem dynamics model for robot polishing. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds.) ICIRA 2019. LNCS (LNAI), vol. 11745, pp. 163–176. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27529-7_15

    Chapter  Google Scholar 

  9. Hamedani, M.H., Sadeghian, H., Zekri, M., Sheikholeslam, F., Keshmiri, M.: Intelligent impedance control using wavelet neural network for dynamic contact force tracking in unknown varying environments. Control. Eng. Pract. 113, 104840 (2021). https://doi.org/10.1016/j.conengprac.2021.104840

    Article  Google Scholar 

  10. Hamedani, M.H., Zekri, M., Sheikholeslam, F., Selvaggio, M., Ficuciello, F., Siciliano, B.: Recurrent fuzzy wavelet neural network variable impedance control of robotic manipulators with fuzzy gain dynamic surface in an unknown varied environment. Fuzzy Sets Syst. 416, 1–26 (2021). https://doi.org/10.1016/j.fss.2020.05.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Rahimi, H.N., Howard, I., Cui, L.: Neural impedance adaption for assistive human–robot interaction. Neurocomputing 290, 50–59 (2018). https://doi.org/10.1016/j.neucom.2018.02.025

    Article  Google Scholar 

  12. Roveda, L., et al.: Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Rob. Syst. 100, 417–433 (2020). https://doi.org/10.1007/s10846-020-01183-3

    Article  Google Scholar 

  13. Zhao, X., Han, S., Tao, B., Yin, Z., Ding, H.: Model-based actor−critic learning of robotic impedance control in complex interactive environment. IEEE Trans. Industr. Electron. 69, 13225–13235 (2022). https://doi.org/10.1109/TIE.2021.3134082

    Article  Google Scholar 

  14. Zhang, T., Xiao, M., Zou, Y., Xiao, J.: Robotic constant-force grinding control with a press-and-release model and model-based reinforcement learning. Int. J. Adv. Manuf. Technol. 106, 589–602 (2019). https://doi.org/10.1007/s00170-019-04614-0

    Article  Google Scholar 

  15. Ding, Y., Zhao, J., Min, X.: Impedance control and parameter optimization of surface polishing robot based on reinforcement learning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2022). https://doi.org/10.1177/09544054221100004

  16. Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Rob. Res. 16, 97–117 (1997). https://doi.org/10.1177/027836499701600107

  17. Duan, J., Gan, Y., Chen, M., Dai, X.: Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 102, 54–65 (2018). https://doi.org/10.1016/j.robot.2018.01.009

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by the National Natural Science Foundation of China (Grant Nos. 52105515, U20A20294 and 52188102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z., Wang, Y., Chen, C., Gao, Z., Peng, F., Yan, R. (2023). Admittance Control for Robot Polishing Force Tracking Based on Reinforcement Learning. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14272. Springer, Singapore. https://doi.org/10.1007/978-981-99-6480-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6480-2_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6479-6

  • Online ISBN: 978-981-99-6480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics