Skip to main content

Positioning Error Modelling and Compensation Method for Robot Machining Based on RVM

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14272))

Included in the following conference series:

  • 491 Accesses

Abstract

The low absolute positioning accuracy of industrial robots leads to low machining accuracy, seriously hindering the development and application of robots in the field of high-precision machining. To solve this problem, this article proposes a robot machining positioning error modeling and compensation method based on RVM. This method takes advantage of RVM’s adaptive parameters and high sparsity to identify the strong nonlinear positioning error. Then, based on the error model, the iterative compensation problem is transformed into an optimization problem to reduce the number of inverse kinematic computations of the robot. Finally, through experiments, the effectiveness of positioning error prediction and compensation is demonstrated.

This work is co-supported by the National Key R &D Program of China [Grant No. 2022YFB4702500], and the National Natural Science Foundation of China [Grant No. U22A20176], the Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization [Grant NO. 2020B1212060014], the Guangdong Basic and Applied Basic Research Foundation [Grant No. 2021A1515110898], the GDAS’ Project of Science and Technology Development [Grant No. 2020GDASYL-20200202001].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kai, W., Li, J., Zhao, H., Zhong, Y.: Review of industrial robot stiffness identification and modelling. Appl. Sci. 12(17), 8719 (2022)

    Article  Google Scholar 

  2. Xie, H., Li, W.L., Zhu, D., Yin, Z., Ding, H.: A systematic model of machining error reduction in robotic grinding. IEEE/ASME Trans. Mechatron. PP(99), 1 (2020)

    Google Scholar 

  3. Ye, C., Yang, J., Zhao, H., Ding, H.: Task-dependent workpiece placement optimization for minimizing contour errors induced by the low posture-dependent stiffness of robotic milling. Int. J. Mech. Sci. 205, 106601 (2021)

    Google Scholar 

  4. Nubiola, A., Bonev, I.A.: Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Robot. Comput. Integr. Manufact. 29(1), 236–245 (2013)

    Article  Google Scholar 

  5. Hu, J., Hua, F., Tian, W.: Robot positioning error compensation method based on deep neural network. J. Phys: Conf. Ser. 1487, 012045 (2020)

    Google Scholar 

  6. Ma, L., Bazzoli, P., Sammons, P.M., Landers, R.G., Bristow, D.A.: Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robot. Comput.-Integrat. Manufact. 50, S0736584517301965 (2017)

    Google Scholar 

  7. Alici, G., Shirinzadeh, B.: A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mech. Machine Theory 40(8), 879–906 (2005)

    Article  MATH  Google Scholar 

  8. Xu, W.L., Wurst, K.H., Watanabe, T., Yang, S.Q.: Calibrating a modular robotic joint using neural network approach. In: IEEE World Congress on IEEE International Conference on Neural Networks (1994)

    Google Scholar 

  9. Nguyen, A.H.N., Zhou, A.J., Kang, B.H.J.: A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing 151, 996–1005 (2015)

    Google Scholar 

  10. Nguyen, H.N., Le, P.N., Kang, H.J.: A new calibration method for enhancing robot position accuracy by combining a robot model-based identification approach and an artificial neural network-based error compensation technique. Adv. Mech. Eng. 11(1), 168781401882293 (2019)

    Google Scholar 

  11. Li, B., Tian, W., Zhang, C., Hua, F., Li, Y.: Positioning error compensation of an industrial robot using neural networks and experimental study. Chin. J. Aeronautics 35(3), 346–360 2021

    Google Scholar 

  12. Zhou, W.: Theory and experiment of industrial robot accuracy compensation method based on spatial interpolation. J. Mech. Eng. 49(3), 7 (2013)

    Article  Google Scholar 

  13. Wang, W., Tian, W., Liao, W., Li, B., Hu, J.: Error compensation of industrial robot based on deep belief network and error similarity. Robot. Comput.-Integr. Manufact. 73(8), 102220 (2022)

    Article  Google Scholar 

  14. Luo, G., Zou, L., Wang, Z., Lv, C., Huang, Y.: A novel kinematic parameters calibration method for industrial robot based on Levenberg-Marquardt and differential evolution hybrid algorithm. Robot. Comput.-Integr. Manufact. 71(1), 102165 (2021)

    Article  Google Scholar 

  15. Dongdong, C., Peijiang, Y., Tianmiao, W., Ying, C., Lei, X.: A compensation method for enhancing aviation drilling robot accuracy based on co-kriging. Int. J. Precis. Eng. Manuf. 19(8), 1133–1142 (2018)

    Article  Google Scholar 

  16. Gong, C., Yuan, J., Ni, J.: Nongeometric error identification and compensation for robotic system by inverse calibration. Int. J. Mach. Tools Manufact. 40(14), 2119–2137 (2000)

    Article  Google Scholar 

  17. Ma, S., Deng, K., Lu, Y., et al.: Robot error compensation based on incremental extreme learning machines and an improved sparrow search algorithm. Int. J. Adv. Manuf. Technol. 125, 5431–5443 (2023)

    Google Scholar 

  18. Zhijun, W., Gao, P., Cui, L., Chen, J.: An incremental learning method based on dynamic ensemble RVM for intrusion detection. IEEE Trans. Netw. Serv. Manage. 19(1), 671–685 (2022)

    Article  Google Scholar 

  19. Nao, S., Wang, Y.: Fault detection of gearbox by multivariate extended variational mode decomposition-based time-frequency images and incremental RVM algorithm. Sci. Rep. 13(1), 7950 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyang Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, J., Liao, Z., Wu, H., Jiang, L., Sun, K. (2023). Positioning Error Modelling and Compensation Method for Robot Machining Based on RVM. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14272. Springer, Singapore. https://doi.org/10.1007/978-981-99-6480-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6480-2_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6479-6

  • Online ISBN: 978-981-99-6480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics