Skip to main content

Research on Snake-Like Robot for Cutter Inspection in Tunnel Boring Machine

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14272))

Included in the following conference series:

  • 497 Accesses

Abstract

While the applications of tunnel boring machine (TBM) are growing due to its high performance, the working mode of “robot replacing labor” is continuously increasing because of TBM’s harsh and confined space. Thus, snake-like robot, which is with superior dexterity and obstacle avoidance ability, are highly suitable for TBM cutter inspection. However, its large number of degrees of freedom (DOFs) makes the inverse kinematics and control strategy very complex. Therefore, the paper researches the efficient kinematics algorithm based on the geometric method, including tip-following and serpentine-scanning methods. Tip-following method achieves to send the end-effector to the target area, while serpentine-scanning method promises the scanning inspection on every cutter. Because of the particularity of the geometric method in this paper, the local coordinate frame and joint space are abandoned, but the “link eigen vector” is utilized to construct a simpler and more direct kinematic model. Simulation and experiment results show the proposed methods satisfy the real-time control and obstacle avoidance. Especially the engineering test shows the snake-like robot can meet the quick and reliable inspection task of the cutter and cutterhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, Y., Zhang, Q., Zhao, J.: Challenges and opportunities of using tunnel boring machines in mining. Tunn. Undergr. Space Technol. 57, 287–299 (2016)

    Article  Google Scholar 

  2. Liu, Q., et al.: A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China. Rock Mech. Rock. Eng. 50(5), 1303–1320 (2018)

    Google Scholar 

  3. Yu, H., Tao, J., Huang, S., Qin, C., Xiao, D., Liu, C.: A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead. Autom. Constr. 124 (2021)

    Google Scholar 

  4. Ren, D., Shen, S., Arulrajah, A., Chen, W.: Prediction model of TBM disc cutter wear during tunnelling in heterogeneous ground. Rock Mech. Rock. Eng. 51(11), 3599–3611 (2018)

    Article  Google Scholar 

  5. Liu, Q., Huang, X., Gong, Q., Du, L., Pan, Y., Liu, J.: Application and development of hard rock TBM and its prospect in China. Tunn. Undergr. Space Technol. 57, 33–46 (2016)

    Article  Google Scholar 

  6. Wan, Z., Sha, M., Zhou, Y.: Study on disk cutters for hard rock (1), application of TB880E TBM in Qinling tunnel. Modern Tunnel. Technol. 39(5), 1–11 (2002)

    Google Scholar 

  7. Wan, Z., Sha, M., Zhou, Y.: Study on disk cutters for hard rock (2), application of TB880E TBM in Qinling tunnel. Modern Tunnel. Technol. 39(6), 1–12 (2002)

    Google Scholar 

  8. Wan, Z., Sha, M., Zhou, Y.: Study on disk cutters for hard rock (3), application of TB880E TBM in Qinling tunnel. Modern Tunnel. Technol. 40(1), 1–6 (2003)

    Google Scholar 

  9. Du, L., Yuan, J., Bao, S., Guan, R., Wan, W.: Robotic replacement for disc cutters in tunnel boring machines. Autom. Constr. 140 (2022)

    Google Scholar 

  10. Chirikjian, G.S., Burdick, J.W.: An obstacle avoidance algorithm for hyper-redundant manipulators. In: Proc. IEEE Int. Conf. Rob. Autom., pp. 625–631. Cincinnati, OH, USA (1990)

    Google Scholar 

  11. Chirikjian, G.S., Burdick, J.W.: Parallel formulation of the inverse kinematics of modular hyper-redundant manipulators. In: Proc. IEEE Int. Conf. Rob. Autom., Sacramento, CA (1991)

    Google Scholar 

  12. Hannan, M.W., Walker, I.D.: Novel ‘elephant’s trunk’ robot. In: IEEE ASME Int Conf Adv Intellig Mechatron AIM, Atlanta, pp. 410-415. GA, USA (1999)

    Google Scholar 

  13. Hannan, M.W., Walker, I.D.: The ‘elephant trunk’ manipulator, design and implementation. In: IEEE ASME Int Conf Adv Intellig Mechatron AIM, pp. 14–19. Como, Italy (2001)

    Google Scholar 

  14. Hannan, M.W., Walker, I.D.: Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J. Robot. Syst. 20(2), 45–63 (2003)

    Article  MATH  Google Scholar 

  15. Xiong, Z., Tao, J., Liu, C.: Inverse kinematics of hyper-redundant snake-arm robots with improved tip following movement. Robot. 40(1), 37–45 (2018)

    Google Scholar 

  16. Naccarato, F., Hughes, P.C.: An inverse kinematics algorithm for a highly redundant variable-geometry-truss manipulator. In: Proc. 3rd Annual Conf. Aerospace Computational Control, pp. 89–45. D.E. Bernard and G.K. Man, Eds. Oxnard (1989)

    Google Scholar 

  17. Naccarato, F., Hughes, P.C.: Inverse kinematics of variable-geometry truss manipulators. J. Robotic. Syst. 8(2), 249–266 (1991)

    Article  MATH  Google Scholar 

  18. Chirikjian, G.S., Burdick, J.W.: A geometric approach to hyper-redundant manipulator obstacle avoidance. J. Mech. Design 114(4), 580–585 (1992)

    Article  Google Scholar 

  19. Chirikjian, G.S., Burdick, J.W.: A modal approach to hyper-redundant manipulator kinematics. IEEE Trans. Robot. Autom. 11(3), 343–354 (1994)

    Article  Google Scholar 

  20. Mu, Z., Yuan, H., Xu, W., Liu, T., Liang, B.: A segmented geometry method for kinematics and configuration planning of spatial hyper-redundant manipulators. IEEE Trans. Syst., Man, Cybern., Syst. 50(5), 1746–1756 (2020)

    Google Scholar 

  21. Xie, H., Wang, C., Li, S., Hu, L., Yang, H.: A geometric approach for follow-the-leader motion of serpentine manipulator. Int. J. Adv. Robot. Syst. 16(5) (2019)

    Google Scholar 

  22. Sreenivasan, S., Goel, P., Ghosal, A.: A real-time algorithm for simulation of flexible objects and hyper-redundant manipulators. Mech. Mach. Theory 45(3), 454–466 (2010)

    Article  MATH  Google Scholar 

  23. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the Inverse Kinematics problem. J. Robot. Syst. 73, 243–260 (2011)

    Google Scholar 

  24. Wang, C., Li, S., Xie, H.: Interactive path-following method of snake-like robot. In: Int. Conf. Robot. Autom. Eng., pp. 178–185. Singapore (2022)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the Central Universities, Award Number: 226-2022-00016, the State Key Laboratory of Fluid Power and Mechatronic Systems Independent Project, Award Number: SKLoFP_ZZ_2106, and the National Key R&D Program of China, Award Number: 2022YFC3802300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Xie, H., Wang, C., Yang, H. (2023). Research on Snake-Like Robot for Cutter Inspection in Tunnel Boring Machine. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14272. Springer, Singapore. https://doi.org/10.1007/978-981-99-6480-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6480-2_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6479-6

  • Online ISBN: 978-981-99-6480-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics