Skip to main content

Animal-Like Eye Vision Assisted Locomotion of a Quadruped Based on Reinforcement Learning

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 501 Accesses

Abstract

The legged robot is only satisfied with walking on flat ground, it obviously does not take advantage of its locomotion performance, especially in the real environment where the robot may encounter various complex terrains. It is a highly nonlinear system for the quadruped robot, so it is very hard to model the dynamics accurately and achieve high performance locomotion control. In recent years, with the emerging of reinforcement learning, there are more possibilities to improve the locomotion ability of legged robots. To address the problem of how to improve the ability of a quadruped robot to negotiate complex terrains, this paper proposes a method to provide an animal-like eye for a quadruped robot to obtain a control strategy based on reinforcement learning. The method uses only the terrain information in front of the quadruped robot as the input state of the robot, and uses a curriculum training method to make the quadruped robot negotiate complex terrains such as the stairway terrain and the gap terrain constructed in the simulation environment smoothly. Compared with the motion strategy based on proprioception only, the vision-assisted motion strategy is safer and smoother, and we utilize less and simpler visual information than other methods based on visual information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, D., Di Carlo, J., Katz, B.: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv preprint arXiv:1909.06586 (2019)

  2. Hwangbo, J., et al.: Learning agile and dynamic motor skills for legged robots. Sci. Robot.  4(26), eaau5872 (2019). 2470-9476

    Google Scholar 

  3. Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning quadrupedal locomotion over challenging terrain. Sci. Robot.  5(47), eabc5986 (2020). 2470-9476

    Google Scholar 

  4. Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., Hutter, M.: Learning robust perceptive locomotion for quadrupedal robots in the wild. Sci. Robot.  7(62), eabk2822 (2022). 2470-9476

    Google Scholar 

  5. Zhang, H., Starke, S., Komura, T., Saito, J.: Mode-adaptive neural networks for quadruped motion control. ACM Trans. Graph.  37(4), 145 (2018). 0730-0301

    Google Scholar 

  6. Jain, D., Iscen, A., Caluwaerts, K.: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019, Macau, SAR, China, November 3–8, 2019, pp. 7551–7557. IEEE (2019a). https://doi.org/10.1109/IROS40897.2019.8967913

  7. Xie, Z., Da, X., van de Panne, M., Babich, B., Garg, A.: Dynamics randomization revisited: a case study for quadrupedal locomotion. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China (2021)

    Google Scholar 

  8. Peng, X., Coumans, E., Zhang, T., Lee, T.-W.E., Tan, J., Levine, S.: Learning agile robotic locomotion skills by imitating animals. Robot. Sci. Syst. 07 (2020). https://doi.org/10.15607/RSS.2020.XVI.064

  9. Ji, G., Mun, J., Kim, H., Hwangbo, J.: Concurrent training of a control policy and a state estimator for dynamic and robust legged locomotion. IEEE Robot. Autom. Lett.   7(2) (2022). 4630-4637

    Google Scholar 

  10. Agarwal, A., Kumar, A., Malik, J., Pathak, D.: Legged locomotion in challenging terrains using egocentric vision. arXiv e-prints (2022)

    Google Scholar 

  11. Kareer, S., Yokoyama, N., Batra, D., Ha, S., Truong, J.: ViNL: visual navigation and locomotion over obstacles. arXiv:2210.14791 (2022)

  12. Loquercio, A., Kumar, A., Malik, J.: Learning visual locomotion with cross-modal supervision. arXiv:2211.03785v1 (2022)

  13. Yang, R., Zhang, M., Hansen, N., Xu, H., Wang, X.: Learning vision-guided quadrupedal locomotion end-to-end with cross-modal transformers. arXiv:2107.03996 (2021)

  14. Torres-Pardo, A., et al.: Legged locomotion over irregular terrains: state of the art of human and robot performance. Bioinspir. Biomim.  17(6)  (2022). 1748-3190

    Google Scholar 

  15. Grandia, R., Taylor, A.J., Ames, A.D., Hutter, M.: Multi-layered safety for legged robots via control barrier functions and model predictive control. In: International Conference on Robotics and Automation (ICRA 2021), Xi’an, China (2021)

    Google Scholar 

  16. Hutter, M., et al.: ANYmal-a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2016)

    Google Scholar 

  17. Gehring, C., et al.: Practice makes perfect: an optimization-based approach to controlling agile motions for a quadruped robot. IEEE Robot. Autom. Mag. 23(1),  34–43 (2016). 1070-9932

    Google Scholar 

  18. Qi, S., Lin, W., Hong, Z., Chen, H., Zhang, W.: Perceptive autonomous stair climbing for quadrupedal robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic (2021)

    Google Scholar 

  19. Zico Kolter, J., Ng, A.Y.: The Stanford LittleDog: a learning and rapid replanning approach to quadruped locomotion. Int. J. Robot. Res.  30(2),  150–174 (2011). 0278-3649

    Google Scholar 

  20. Zucker, M., Andrew Bagnell, J., Atkeson, C.G., Kuffner, J.: An optimization approach to rough terrain locomotion. In: 2010 IEEE International Conference on Robotics and Automation. IEEE (2010)

    Google Scholar 

  21. Zucker, M., et al.: Optimization and learning for rough terrain legged locomotion. Int. J. Robot. Res.  30(2),  175–191 (2011). 0278-3649

    Google Scholar 

  22. Tan, W., et al.: A hierarchical framework for quadruped locomotion based on reinforcement learning. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic (2021)

    Google Scholar 

  23. Kumar, A., Fu, Z., Pathak, D., Malik, J.: RMA: rapid motor adaptation for legged robots. In: Robotics: Science and Systems XVII (2021). https://doi.org/10.15607/RSS.2021.XVII.011

  24. Makoviychuk, V., et al.:: Isaac Gym: high performance GPU-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470 (2021)

    Google Scholar 

  25. Nikita, R., David, H., Philipp, R., Marco, H.: Learning to walk in minutes using massively parallel deep reinforcement learning. In: Proceedings of Machine Learning Research,  vol. 164,  pp. 91–100  (2022). 2640-3498

    Google Scholar 

  26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint (2017). https://doi.org/10.48550/arXiv.1707.06347

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, X., Wei, Q., An, H., Zhang, Z., Yu, J., Ma, H. (2023). Animal-Like Eye Vision Assisted Locomotion of a Quadruped Based on Reinforcement Learning. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics