Skip to main content

Improving Motor Imagery Brain-Computer Interface Performance Through Data Screening

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 476 Accesses

Abstract

Brain-computer interface (BCI) technology enables the direct transmission of human control intentions to external devices, allowing direct control of external devices through the human brain. However, the current implementation of BCIs is limited by the low accuracy of electroencephalogram (EEG) classification. In this study, we applied Gaussian distribution model as a preprocessing tool to screen and filter EEG training data samples, aiming to improve the classification accuracy of motor imagery tasks. Firstly, the Gaussian distribution model was established through small sample pre-training. Subsequently, a probability threshold was determined based on the two types of Gaussian model distributions corresponding to the imagery of the left and right hands. This threshold was used to screen and filter subsequent training samples. Our results demonstrated that this proposed method effectively enhanced the accuracy of motor imagery task classification, and significant improvements were observed in public datasets. This study emphasizes the importance of data screening in ensuring the quality and reliability of training data, thereby presenting promising opportunities for the practical implementation of BCI technology.

S. Zheng and L. Jiang—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  2. Vidal, J.J.: Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)

    Article  Google Scholar 

  3. Elbert, T., Rockstroh, B., Lutzenberger, W., Birbaumer, N.: Biofeedback of slow cortical potentials. I Electroencephalogr. Clin. Neurophysiol. 48(3), 293–301 (1980)

    Article  Google Scholar 

  4. Birbaumer, N., Elbert, T., Canavan, A.G., Rockstroh, B.: Slow potentials of the cerebral cortex and behavior. Physiol. Rev. 70(1), 1–41 (1990)

    Article  Google Scholar 

  5. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1988)

    Article  Google Scholar 

  6. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Article  Google Scholar 

  7. Wang, Y., Gao, S., Gao, X.: Common spatial pattern method for channel selelction in motor imagery based brain-computer interface. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 5392–5395. IEEE, January 2006

    Google Scholar 

  8. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans. Biomed. Eng. 49(10), 1181–1186 (2002)

    Article  Google Scholar 

  9. Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. In: Mayo Clinic Proceedings, vol. 87, no. 3, pp. 268–279. Elsevier, March 2012

    Google Scholar 

  10. Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  11. Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31(1), 153–159 (2006)

    Article  Google Scholar 

  12. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  13. Dornhege, G., Blankertz, B., Curio, G., Muller, K.R.: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 51(6), 993–1002 (2004)

    Article  Google Scholar 

  14. Nisar, H., Boon, K.W., Ho, Y.K., Khang, T.S.: Brain-computer interface: feature extraction and classification of motor imagery-based cognitive tasks. In: 2022 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), pp. 42–47. IEEE (2022)

    Google Scholar 

  15. Guerrero, M.C., Parada, J.S., Espitia, H.E.: EEG signal analysis using classification techniques: logistic regression, artificial neural networks, support vector machines, and convolutional neural networks. Heliyon 7(6), e07258 (2021)

    Article  Google Scholar 

  16. Liu, X., Shen, Y., Liu, J., Yang, J., Xiong, P., Lin, F.: Parallel spatial–temporal self-attention CNN-based motor imagery classification for BCI. Front. Neurosci. 14, 587520 (2020)

    Article  Google Scholar 

  17. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  18. Sakhavi, S., Guan, C., Yan, S.: Learning temporal information for brain-computer interface using convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5619–5629 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jing, L., Yaojie, W., Guangming, L., Xiaofan, W., Xiaofeng, L., Xinhong, H.: Mirror convolutional neural network for motor imagery electroencephalogram recognition. J. Image Graph. 26(9), 2257–2269 (2021)

    Google Scholar 

  20. Tangermann, M., et al.: Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)

    Google Scholar 

  21. Cho, H., Ahn, M., Ahn, S., Kwon, M., Jun, S.C.: EEG datasets for motor imagery brain–computer interface. GigaScience 6(7), gix034 (2017)

    Google Scholar 

  22. Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India. 2(1), 49–55 (1936)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (12101570), Zhejiang Lab & Pujiang Lab (K2023KA1BB01), and Key Research Project of Zhejiang Lab (2022KI0AC01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yina Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, S. et al. (2023). Improving Motor Imagery Brain-Computer Interface Performance Through Data Screening. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics