Skip to main content

A Six-Dof Parallel Robot-Assisted Dispensing Platform with Visual Servoing and Force Sensing for Accurate Needle Positioning and Mass Control

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 536 Accesses

Abstract

Traditional manual dispensing of intravenous drugs needs the pharmacist to work in a pharmacy intravenous admixture services (PIVAS), leading to low efficiency, heavy physical labor, and the potential toxic drug exposure risk. There exist some automatic systems for drug dispensing. However, they may lead to inaccurate positioning and mass control due to various vial sizes and assembly errors. To solve this, this paper develops a compact dispensing platform with a six-DOF parallel robot, force sensing module, and visual servoing module for routine work in the biosafety cabinet. First, a customized robot to work inside the biosafety cabinet is developed using the configuration of 6-PSS parallel robot with three single-axis force sensors, enabling accurate needle positioning and mass control. Then, the forward and inverse kinematics are built to analyze and optimize its operational workspace and performance. Second, a visual servoing algorithm using a binocular camera is used to align the injection needle and the vial hole and a force-sensing module is incorporated onto the parallel robot to achieve real-time onsite measurement and evaluation of mass changes in the aspirated liquid. Finally, experiments are carried out to validate the effectiveness of the proposed robotic dispensing platform, and results indicate that the average positioning error is 0.41 mm, and the average mass error is 0.3 g. The developed robotic dispensing platform shows the merits of unmanned working inside the biosafety cabinet without occupying additional space, also makes accurate robotic positioning be adapted to the various sizes of commercial vials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pépin, J.C.N., et al.: Evolution of the global burden of viral infections from unsafe medical injections 2000–2010. PLoS One 9(6), e99677 (2014)

    Article  Google Scholar 

  2. Hedlund, N., Beer, I., et al.: Systematic evidence review of rates and burden of harm of intravenous admixture drug preparation errors in healthcare settings. BMJ Open. 7(12), e015912 (2017)

    Article  Google Scholar 

  3. Pethran, A., Schierl, R., et al.: Uptake of antineoplastic agents in pharmacy and hospital personnel. Part I: monitoring of urinary concentrations. Int. Arch. Occup. Environ. Health 76(1), 5–10 (2003). https://doi.org/10.1007/s00420-002-0383-8

    Article  Google Scholar 

  4. Harolds, J.A., Harolds, L.B.: Quality and safety in health care, part x: other technology to reduce medication errors. Clin Nucl Med. 41(5), 376–378 (2016)

    Article  Google Scholar 

  5. Peters, B.J., Capelle, M.A., et al.: Validation of an automated method for compounding monoclonal antibody patient doses: case studies of Avastin (bevacizumab), Remicade (infliximab) and Herceptin (trastuzumab). MAbs. 5(1), 162–170 (2012)

    Article  Google Scholar 

  6. Janjua, N.Z., Butt, Z.A., et al.: Towards safe injection practices for prevention of hepatitis C transmission in South Asia: Challenges and progress. World J. Gastroenterol. 22(25), 5837–5852 (2016)

    Article  Google Scholar 

  7. Felkey, B.G., Barker, K.N.: Technology and automation in pharmaceutical care. J. Am. Pharm. Assoc. (Wash). 36(5), 309–314 (1996)

    Article  Google Scholar 

  8. Murray, M.D.: Information technology: the infrastructure for improvements to the medication-use process. Am. J. Health Syst. Pharm. 57(6), 565–571 (2000)

    Article  Google Scholar 

  9. Jodi, F.: Robotic products to assist the aging population. Interactions. 12(2), 16–18 (2005)

    Article  Google Scholar 

  10. Urbine, T.F., Schneider, P.J.: Estimated cost savings from reducing errors in the preparation of sterile doses of medications. Hosp. Pharm. 49(8), 731–739 (2014)

    Article  Google Scholar 

  11. Sivlee, L., Morgan, L.: Implementation of wireless “intelligent” pump iv Infusion technology in a not-for-profit academic hospital setting. Hosp. Pharm. 12, 832–840 (2001)

    Google Scholar 

  12. Yagüe, C., Maqueda, G, et al.: Characteristics of turbulence in the lower atmosphere at Halley IV station, Antarctica. In: Dynamics of Atmospheres and Oceans, pp.205–223(2001)

    Google Scholar 

  13. Schoening, T., Artes, A., et al.: Semiautomated aseptic preparation of patient-individual antineoplastic intravenous solutions: first experiences in a German hospital pharmacy. Eur. J. Hosp. Pharm. 23(1), 44–49 (2016)

    Article  Google Scholar 

  14. He, Y.C., et al.: Design and implementation of an intravenous medication dispensing robot. In: 2019 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 191–196 (2019)

    Google Scholar 

  15. Jin, H.Y., et al.: Dispensing robot for toxic drugs in pharmacy intravenous admixture services. In: 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 905-909 (2021)

    Google Scholar 

  16. Arshad, M., et al.: Solution of forward kinematics model of six degrees of freedom parallel robot manipulator. In: Proceedings of the IEEE Symposium on Emerging Technologies, pp. 393-398 (2005)

    Google Scholar 

  17. Merlet, J.P., et al.: Solving the forward kinematics of a gough-type parallel manipulator with interval analysis. Int. J. Robot. Res. 23(3), 221–235 (2004)

    Article  Google Scholar 

  18. Jiang, P.Y., et al.: A review of yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022)

    Article  Google Scholar 

  19. Zhao, Z.Q., et al.: Object detection with deep learning: a review. In: IEEE Transactions on Neural Networks and Learning Systems, vol.30, pp. 3212–3232 (2019)

    Google Scholar 

  20. Maity, M., et al.: Faster r-cnn and yolo based vehicle detection: a survey. In: 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 1442–1447 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Science and Technology Commission of Shanghai Municipality (22511101602); the National Natural Science Foundation of China (62003209); the Natural Science Foundation of Shanghai (21ZR1429500); the Shanghai Rising-Star Program (22QC1401400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhu Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, J., Lin, Z., Liu, H., Gao, A. (2023). A Six-Dof Parallel Robot-Assisted Dispensing Platform with Visual Servoing and Force Sensing for Accurate Needle Positioning and Mass Control. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics