Skip to main content

A Modular Tensegrity Mobile Robot with Multi-locomotion Modes

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 933 Accesses

Abstract

Tensegrity mobile robots have merits of high stiff-to-mass ratio and superior structural compliance, making them a hot research topic recently. In this work, a novel modular tensegrity mobile robot with multi-locomotion modes is proposed. Unlike the existing conventional tensegrity robots, the robot in this work has abundant deformation ability, and can achieve four locomotion modes in terms of earthworm-like, inchworm-like, tumbling and hybrid locomotion. Afterwards, motion planning of the four locomotion modes based on the kinematic model is implemented, and the driving law of the motors under each locomotion mode can be obtained. A prototype of the robot is developed, and experimental results show that the robot can effectively adjust to five types of terrains by the four locomotion modes (maximum velocity on flat ground 33.90 BL/min, minimum height of confined space 1.18 BH, maximum angle of slope 9°, maximum height of obstacle 0.55 BH and maximum width of gap 0.21 BL. BL and BH represent the body length and body height of the robot, respectively). This work provides a useful reference for the application of tensegrity structures in the field of multi-locomotion mobile robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sychterz, A.C., Smith, I.F.C.: Using dynamic measurements to detect and locate ruptured cables on a tensegrity structure. Eng. Struct. 173, 631–642 (2018)

    Article  Google Scholar 

  2. Yang, S., Sultan, C.: Deployment of foldable tensegrity–membrane systems via transition between tensegrity configurations and tensegrity–membrane configurations. Int. J. Solids Struct. 160, 103119 (2019)

    Article  Google Scholar 

  3. Feng, X.D., Miah, M.S., Ou, Y.W.: Dynamic behavior and vibration mitigation of a spatial tensegrity beam. Eng. Struct. 171, 1007–1016 (2018)

    Article  Google Scholar 

  4. Wang, Y.F., Xu, X., Luo, Y.Z.: Minimal mass design of active tensegrity structures. Eng. Struct. 234, 111965 (2021)

    Article  Google Scholar 

  5. Luo, J.L., Rdmunds, R., Rice, F., Agogino, A.M.: Tensegrity robot locomotion under limited sensory inputs via deep reinforcement learning. In: 2018 IEEE International Conference on Robotics and Automation, pp. 6260–5267. IEEE Press, Brisbance (2018)

    Google Scholar 

  6. Savin, S., Badr, A.A., Devitt, D., Fedorenko, R., Klimchik, A.: Mixed–integer–based path and morphing planning for a tensegrity drone. Appl. Sci. 12(11), 5588 (2022)

    Article  Google Scholar 

  7. Liu, Y.X., Bi, Q., Yue, X.M., Wu, J., Yang, B., Li, Y.B.: A review on tensegrity structures–based robots. Mech. Mach. Theory 168, 104571 (2022)

    Article  Google Scholar 

  8. Shah, D.S., et al.: Tensegrity robotics. Soft Robotics 9(4), 639–656 (2021)

    Article  Google Scholar 

  9. Sabelhaus, A.P., et al.: System design and locomotion of SUPERball, an untethered tensegrity robot. In: 2015 IEEE International Conference on Robotics and Automation, pp. 1050–4729. IEEE Press, Seattle (2015)

    Google Scholar 

  10. Vespignani, M., Friesen, J.M., SunSpiral, V., Bruce, J.: Design of SUPERball v2, a compliant tensegrity robot for absorbing large impacts. In: Maciejewski, A.A., Okamura, A. (eds.) 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2865–2871. IEEE Press, Madrid (2018)

    Chapter  Google Scholar 

  11. Kim, K., Agogino, A.K., Agogion, A.M.: Emergent form–finding for center of mass control of ball–shaped tensegrity robots (2015)

    Google Scholar 

  12. Kim, K., Agogino, A.K., Toghyan, A., Moon, D., Taneja, L., Agogino, A.M: Robust learning of tensegrity robot control for locomotion through form–finding. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5824–5831. IEEE Press, Hamburg (2016)

    Google Scholar 

  13. Chen, L.H., et al.: Soft spherical tensegrity robot design using rod–centered actuation and control. In: 2016 ASME International Design Engineering Technical Conference/Computer and Information in Engineering Conference (IDETC/CIE), vol. 9, p. 025001. ASME, Charlotte (2016)

    Google Scholar 

  14. Hao, S.Q., et al.: Configuration design and gait planning of a six-bar tensegrity robot. Appl. Sci. 12(22), 11845 (2022)

    Article  Google Scholar 

  15. Littlefield, Z., Surovik, D., Vespignani, M., Bruce, J., Wang, W.F., Bekris, K.E.: Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives. Int. J. Robot. Res. 38(12), 1442–1462 (2019)

    Article  Google Scholar 

  16. Paul, C., Roberts, J.W., Lipson, H., Cuevas, F.J.V: Gait production in a tensegrity based robot. In: 12th International Conference on Advanced Robotics, pp.216–222. IEEE Press, Seattle (2005)

    Google Scholar 

  17. Rovira, A.G., Tur, J.M.M.: Control and simulation of a tensegrity–based mobile robot. Robot. Auton. Syst. 57(5), 526–535 (2009)

    Article  Google Scholar 

  18. Luo, A., Wang, J.D., Liu, H.P.: Four–bar tensegrity robot based on ADAMS simulation. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp.1463–1468. IEEE Press, Takamatsu (2017)

    Google Scholar 

  19. Chung, Y.S., Lee, J.H., Jang, J.H., Choi, H.R., Rodrigue, H.: Jumping tensegrity robot based on torsionally prestrained SMA Springs. ACS Appl. Mater. Interfaces. 11(43), 40793–40799 (2019)

    Article  Google Scholar 

  20. Kim, K., et al.: Hopping and rolling locomotion with spherical tensegrity robots. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4369–4376. IEEE Press, Daejeon (2016)

    Google Scholar 

  21. Koizumi, Y., Shibata, M., Hirai, S.: Rolling tensegrity driven by pneumatic soft actuators. In: 2012 IEEE International Conference on Robotics and Automation, pp. 1988–1993. IEEE Press, Paul (2012)

    Google Scholar 

  22. Khazanov, M., Humphreys, B., Keat, W., Rieffel, J.: Exploiting dynamical complexity in a physical tensegrity robot to achieve locomotion. In: The Twelfth European Conference on Artificial Life, pp. 965–972. ASME, Sicily (2013)

    Google Scholar 

  23. Wang, Z.J., Li, K., He, Q.G., Cai, S.Q.: A light–powered ultralight tensegrity robot with high deformability and load capacity. Adv. Mater. 31(7), 1806849 (2019)

    Article  Google Scholar 

  24. Paul, C., Valero–Cuevas, F.J., Lipson, H: Design and control of tensegrity robots for locomotion. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 22, pp. 944–957. IEEE Press, Edmonton (2005)

    Google Scholar 

Download references

Acknowledgments

This work is funded by National Natural Science Foundation of China (grants 52275028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q., Yu, Z., Lian, B., Sun, T. (2023). A Modular Tensegrity Mobile Robot with Multi-locomotion Modes. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics