Skip to main content

RGB-D Camera Based Map Building and Path Planning of Snake Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 488 Accesses

Abstract

Snake robot is a robot that can move freely in a small and complex space with super-redundant DOF and motion flexibility, and it has been proven to have a wide range of application prospects. RGB-D camera is a new type of visual sensor that can directly obtain color images and depth information. To enable the snake robot to work in some special task environments, we developed an orthogonal modular snake robot using RGB-D cameras, and conducted research on snake robot map building and path planning. An improved Batch Informed Tree (BIT*) algorithm is proposed. Finally, to verify the effectiveness of the proposed method, a corresponding experimental program is designed and related experimental analysis is carried out. The results show that our designed snake robot can complete the task of map building and path planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su, Z., Zhang, S., Li, X.: Present situation and development tendency of snake-like robots. China Mech. Eng. 26(3), 414–425 (2015)

    Google Scholar 

  2. Hirose, S., Yamada, H.: Snake-like robots (tutorial). IEEE Robot. Autom. Mag. 16(1), 88–98 (2009)

    Article  Google Scholar 

  3. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: A review on modelling, implementation, and control of snake robots. Robot. Auton. Syst. 60(1), 29–40 (2012)

    Article  MATH  Google Scholar 

  4. Tanaka, M., Kon, K., Tanaka, K.: Range-sensor-based semiautonomous whole-body collision avoidance of a snake robot. IEEE Trans. Control Syst. Technol. 23(5), 1927–1934 (2015)

    Article  Google Scholar 

  5. Tian, Y., Gomez, V., Ma, S.: Influence of two SLAM algorithms using serpentine locomotion in a featureless environment. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 182–187. IEEE (2015)

    Google Scholar 

  6. Tang, G., Tang, C., Claramunt, C., Hu, X., Zhou, P.: Geometric a-star algorithm: an improved a-star algorithm for AGV path planning in a port environment. IEEE Access 9, 59196–59210 (2021)

    Article  Google Scholar 

  7. Khatib, O.: Real-time obstacle avoidance system for manipulators and mobile robots. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation, pp. 25–28. IEEE (1985)

    Google Scholar 

  8. Konar, A., Chakraborty, I.G., Singh, S.J., Jain, L.C., Nagar, A.K.: A deterministic improved Q-learning for path planning of a mobile robot. IEEE Trans. Syst. Man Cybern. Syst. 43(5), 1141–1153 (2013)

    Article  Google Scholar 

  9. Labbé, M., Michaud, F.: RTAB-map as an open-source lidar and visual simultaneous localization and mapping library for large-scale and long-term online operation. J. Field Robot. 36(2), 416–446 (2019)

    Article  Google Scholar 

  10. Zhang, B., Liu, J.: Research on robot path planning based on improved BIT*. Appl. Res. Comput. 39(01), 59–63 (2022)

    Google Scholar 

  11. Enner, F., Rollinson, D., Choset, H.: Simplified motion modeling for snake robots. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4216–4221 (2012)

    Google Scholar 

  12. Hirose, S.: Biologically inspired robots: snake-like locomotors and manipulators. Robotica 12(3), 282 (1993)

    MathSciNet  Google Scholar 

  13. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, p. 5. IEEE (2009)

    Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation funded project (2021T140159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjun Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Y., Wang, Q., Xue, Z., Liu, R., Liu, H. (2023). RGB-D Camera Based Map Building and Path Planning of Snake Robot. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_40

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics