Skip to main content

A Flexible and Highly Sensitive Ultrasonic Transducer for Accurate Three-Dimensional Positioning

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

  • 486 Accesses

Abstract

Three-dimensional (3D) positioning enables the precise localization and processing of objects and has been regarded as a vital technology with diverse applications in numerous fields. This paper presents a novel ultrasonic transducer with high sensitivity and flexibility for detecting 3D positions of target objects. The proposed flexible transducer features a 1 × 3 array of 1–3 piezoelectric composites that exploits copper (Cu) for interconnection and is encapsulated by thin and flexible polyimide (PI) films. Thus, this design allows the transducer to be folded to confirm to intersecting surfaces. The 1–3 composite with high electromechanical coupling efficiency can convert electrical voltages into mechanical vibration to excite ultrasonic waves. A fabrication method using magnetron sputtering was developed to fabricate the flexible ultrasonic transducer. Experimental tests showed that the developed transducer exhibited a resonant frequency of approximately 4.79 MHz, good electromechanical coupling (keff = 0.568), wide bandwidth (34.7%), and a broad measuring range over 12 cm propagation distance with a diffusion angle of 28.08°. Three elements of ultrasonic transducer are covered onto an orthogonal plane to cross-locate the objects under water environment. The experimental results showed that the proposed ultrasonic transducer achieved over 94.14% accuracy for 3D positioning. Therefore, our developed ultrasonic transducer indicates the potential for the applications requires 3D positioning and positioning detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, W., Kim, S.W., Bosse, H., Haitjema, H.: Measurement technologies for precision positioning. CIRP Ann. Manuf. Technol. 64(2), 773–796 (2015). https://doi.org/10.1016/j.cirp.2015.05.009

    Article  Google Scholar 

  2. Spencer, B.F., Hoskere, V., Narazaki, Y.: Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering 5(2), 199–222 (2019). https://doi.org/10.1016/j.eng.2018.11.030

    Article  Google Scholar 

  3. Wu, F.Y., Duan, J.L., Ai, P.Y., Chen, Z.Y.: Rachis detection and three-dimensional localization of cut off point for vision-based banana robot. Comput. Electron. Agric. 198, 107079 (2022). https://doi.org/10.1016/j.compag.2022.107079

    Article  Google Scholar 

  4. He, B., Bai, K.J.: Digital twin-based sustainable intelligent manufacturing: a review. Adv. Manufg 9, 1–21 (2021). https://doi.org/10.1007/s40436-020-00302-5

    Article  Google Scholar 

  5. Gao, W., Haitjema, H., Fang, F.Z.: On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. Manuf. Technol. 68(2), 843–866 (2019). https://doi.org/10.1016/j.cirp.2019.05.005

    Article  Google Scholar 

  6. Gongal, A., Amatya, S., Karkee, M., Zhang, Q., Lewis, K.: Sensors and systems for fruit detection and localization: a review. Comput. Electron. Agric. 116, 8–19 (2015). https://doi.org/10.1016/j.compag.2015.05.021

    Article  Google Scholar 

  7. McCoy, J.T., Auret, L.: Machine learning applications in minerals processing: a review. Miner. Eng. 132, 95–109 (2019). https://doi.org/10.1016/j.mineng.2018.12.004

    Article  Google Scholar 

  8. Scime, L., Beuth, J.: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm. Addit. Manuf. 19, 114–126 (2018). https://doi.org/10.1016/j.addma.2017.11.009

    Article  Google Scholar 

  9. Zhuang, Y., Hua, L., Qi, L.: A survey of positioning systems using visible LED lights. IEEE Commun. Surv. Tutor. 20(3), 1963–1988 (2018). https://doi.org/10.1109/COMST.2018.2806558

    Article  Google Scholar 

  10. Armstrong, J., Sekercioglu, Y.A., Neild, A.: Visible light positioning: a roadmap for international standardization. IEEE Commun. Mag. 51(12), 68–73 (2013). https://doi.org/10.1109/MCOM.2013.6685759

    Article  Google Scholar 

  11. Kim, H.S., Kim, D.R., Yang, S.H., Son, Y.H., Han, S.K.: An indoor visible light communication positioning system using a RF carrier allocation technique. J. Light. Technol. 31(1), 134–144 (2012). https://doi.org/10.1109/JLT.2012.2225826

    Article  Google Scholar 

  12. Thrush, A., Hartshorne, T., Deane, C. R.: Vascular Ultrasound E-Book: How, why and when. Elsevier (2021).

    Google Scholar 

  13. Liu, W., Wu, D.: Low temperature adhesive bonding-based fabrication of an air-borne flexible piezoelectric micromachined ultrasonic transducer. Sensors 20(11), 3333 (2020). https://doi.org/10.3390/s20113333

    Article  Google Scholar 

  14. Chen, J., Zhao, J., Lin, L., Sun, X.: Quasi-spherical PVDF ultrasonic transducer with double-cylindrical PVDF structure. IEEE Sens. J. 20(1), 113–120 (2019). https://doi.org/10.1109/JSEN.2019.2941980

    Article  Google Scholar 

  15. Sadeghpour, S., Meyers, S., Kruth, J.P., Vleugels, J., Kraft, M., Puers, R.: Resonating shell: a spherical-omnidirectional ultrasound transducer for underwater sensor networks. Sensors. 19(4), 757 (2019). https://doi.org/10.3390/s19040757

    Article  Google Scholar 

  16. La, T.G., Le, L.H.: Flexible and wearable ultrasound device for medical applications: a review on materials, structural designs, and current challenges. Adv. Mater. Technol. 7(3), 2100798 (2022). https://doi.org/10.1002/admt.202100798

    Article  Google Scholar 

  17. Liu, W., Zhu, C., Wu, D.: Flexible and stretchable ultrasonic transducer array conformed to complex surfaces. IEEE Electron Device Lett. 42(2), 240–243 (2020). https://doi.org/10.1109/LED.2020.3045037

    Article  Google Scholar 

  18. Qi, Y., Jafferis, N.T., Lyons, K., Jr., Lee, C.M., Ahmad, H., McAlpine, M.C.: Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10(2), 524–528 (2010). https://doi.org/10.1021/nl903377u

    Article  Google Scholar 

  19. Wang, C., et al.: Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2(9), 687–695 (2018). https://doi.org/10.1038/s41551-018-0287-x

    Article  Google Scholar 

  20. Hongjie, Hu., et al.: Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 4(3), eaar3979 (2018). https://doi.org/10.1126/sciadv.aar3979

    Article  Google Scholar 

  21. Liu, W., Chen, W., Zhu, C., Wu, D.: Design and micromachining of a stretchable two-dimensional ultrasonic array. Micro and Nano Engineering. 13, 100096 (2021). https://doi.org/10.1016/j.mne.2021.100096

    Article  Google Scholar 

  22. Gu, X., Yang, Y., Chen, J., Wang, Y.: Temperature-dependent properties of a 1–3 connectivity piezoelectric ceramic–polymer composite. Energy Harvesting Syst. 2(3–4), 107–112 (2015). https://doi.org/10.1515/ehs-2014-0049

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Grant No. 52175522), Fundamental Research Funds for the Central Universities (Grant No. 2022FZZX01–06) and Science Foundation of Donghai Laboratory (Grant No. DH-2022KF01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Zhang, Z., He, J., Wang, Y. (2023). A Flexible and Highly Sensitive Ultrasonic Transducer for Accurate Three-Dimensional Positioning. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics