Skip to main content

Trajectory Planning of Aerial Manipulators Based on Inertial Decomposition

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14268))

Included in the following conference series:

  • 419 Accesses

Abstract

Aerial manipulator poses a challenging trajectory planning problem because of the dynamical coupling between the quadrotor and the robotic arms. Aiming at the system trajectory planning problems of the center of mass(CoM) offset after the dynamic swing of manipulator, this paper proposes a trajectory planning method based on inertial decomposition. Meanwhile, in the proposed method, the dynamic constraints of the quadrotor are also taken into account to ensure the pitch angle and angular velocity of quadrotors are suitable and feasible. A geometry controller is used to ensure accurate tracking of the planned trajectory. Simulations are carried out to verify the proposed method.

This work was supported by National key research and development program (2022YFC3005104), National Natural Science Foundation of China (92248303), Shenyang Science and Technology Plan (21-108-9-18), Shenyang Science and Technology Bureau (RC210477), Youth Innovation Promotion Association of the Chinese Academy of Sciences (Y2022065).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: a literature review. IEEE Robot. Autom. Lett. 3(3), 1957–1964 (2018)

    Article  Google Scholar 

  2. Kondak, K., et al.: Aerial manipulation robot composed of an autonomous helicopter and a 7 degrees of freedom industrial manipulator. In: 2014 IEEE international conference on robotics and automation (ICRA), pp. 2107–2112. IEEE, Hong Kong (2014)

    Google Scholar 

  3. Cataldi, E., et al.: Impedance control of an aerial-manipulator: preliminary results. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3848–3853. IEEE, Daejeon (2016)

    Google Scholar 

  4. Lee, H., Kim, H., Kim, H.J.: Path planning and control of multiple aerial manipulators for a cooperative transportation. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2386–2391. IEEE, Hamburg (2015)

    Google Scholar 

  5. Lindsey, Q., Mellinger, D., Kumar, V.: Construction of cubic structures with quadrotor teams. Proc. Robot. Sci. Syst. 7(7), 986–995 (2011)

    Google Scholar 

  6. Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., Kohler, M.: Aerial robotic construction towards a new field of architectural research. Int. J. Archit. Comput. 10(3), 439–459 (2012)

    Google Scholar 

  7. Kim, S., Choi, S., Kim, H.J.: Aerial manipulation using a quadrotor with a two DOF robotic arm. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4990–4995. IEEE Robotics and Automation Society, Chicago (2013)

    Google Scholar 

  8. Yoshikawa, T., Zheng, X.Z.: Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object. Int. J. Robot. Res. 12(3), 219–230 (1993)

    Article  Google Scholar 

  9. Zhan, W., Chen, Y., Wang, Y., Chao, F., Shen, Q.: Robust control for autonomous surveillance with unmanned aerial manipulator. In: Jansen, T., Jensen, R., Parthaláin, N.M., Lin, C.-M. (eds.) UKCI 2021. AISC, vol. 1409, pp. 215–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87094-2_19

    Chapter  Google Scholar 

  10. Hwang, C.L., Yang, C.C., Hung, J.Y.: Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control. IEEE Trans. Fuzzy Syst. 26(2), 899–914 (2017)

    Article  Google Scholar 

  11. Yang, H., Wang, S., Zuo, Z.: Trajectory tracking for a wheeled mobile robot with an omnidirectional wheel on uneven ground. IET Control Theory Appl. 14(7), 921–929 (2020)

    Article  MathSciNet  Google Scholar 

  12. Huang, J., Ri, S., Fukuda, T., Wang, Y.: A disturbance observer based sliding mode control for a class of underactuated robotic system with mismatched uncertainties. IEEE Trans Autom. Control 64(6), 2480–2487 (2018)

    Google Scholar 

  13. Shahbazzadeh, M., Sadati, S.J., Minagar, S.: Trajectory tracking control for mobile robots considering position of mass center. Optimal Control Appl. Methods 42(6), 1542–1555 (2021). https://doi.org/10.1002/oca.2744

    Article  MATH  Google Scholar 

  14. Fresk, E., Wuthier, D., Nikolakopoulos, G.: Generalized center of gravity compensation for multirotors with application to aerial manipulation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4424–4429. IEEE, Vancouver (2017)

    Google Scholar 

  15. Zhang, J., Yang, L., Shen, G.: New hybrid adaptive control approach for aircraft with centre of gravity variation. IET Control Theory Appl. 6(14), 2179–2187 (2012)

    Article  MathSciNet  Google Scholar 

  16. Yang, S., He, B., Wang, Z., Xu, C., Gao, F.: Whole-body real-time motion planning for multicopters. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9197–9203. IEEE, Xi’an (2021)

    Google Scholar 

  17. Zhang, X., et al.: Trajectory planning of quadrotors flight like binary star. In: 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 935–940. IEEE, Changbai Mountain (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Yang, L., Zhang, G., Li, S., He, Y. (2023). Trajectory Planning of Aerial Manipulators Based on Inertial Decomposition. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14268. Springer, Singapore. https://doi.org/10.1007/978-981-99-6486-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6486-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6485-7

  • Online ISBN: 978-981-99-6486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics