Skip to main content

All-in-One Image Dehazing Based on Attention Mechanism

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14268))

Included in the following conference series:

  • 918 Accesses

Abstract

The objective of image dehazing is to restore the clear content from a hazy image. However, different parts of the same image pose varying degrees of difficulty for recovery. Existing image dehazing networks treat channel and pixel features equally, making it challenging to handle images with non-uniform haze distribution and weighted channels. To address this limitation, we propose a feature attention module for all-in-one image dehazing. The feature attention module comprises channel attention and pixel attention, offering enhanced flexibility in processing different types of information. Specifically, we perform stitching between adjacent layers in the channel dimension during feature extraction. Subsequently, we apply channel attention and pixel attention on the stitching layer with a large channel dimension. To preserve detailed texture features and minimize information loss from the attention mechanism, we use summation operations between the feature layer obtained after each attention operation and the input layer. Our model prioritizes attention to the dense haze region while maintaining overall brightness. Extensive experiments demonstrate that our method surpasses state-of-the-art dehazing techniques in terms of performance, requiring fewer parameters and FLOPs.

Supported by Liaoning Education Department General Project Foundation (LJKZ0231, LJKZZ20220033); Huaian Natural Science Research Plan Project Foundation (HAB202083).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Berman, D., Avidan, S.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674ā€“1682 (2016)

    Google Scholar 

  2. Cai, B., et al.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187ā€“5198 (2016)

    Google Scholar 

  3. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253ā€“3261 (2018)

    Google Scholar 

  4. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3194ā€“3203 (2018)

    Google Scholar 

  5. Chen, D., et al.: Gated context aggregation network for image dehazing and deraining. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1375ā€“1383. IEEE (2019)

    Google Scholar 

  6. Dong, J., Pan, J.: Physics-based feature dehazing networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 188ā€“204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_12

  7. Cui, T., Tian, J., Wang, E., Tang, Y.: Single image dehazing by latent region Segmentation based transmission estimation and weighted L1-norm regularization. IET Image Process 11(2), 145ā€“154 (2016)

    Google Scholar 

  8. Fattal, R.: Single image dehazing. ACM Trans. Graph. 27(3), 1ā€“9 (2008)

    Article  MATH  Google Scholar 

  9. Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. 34(1), 1ā€“14 (2014)

    Article  MATH  Google Scholar 

  10. Qin, X., et al.: FFA-Net: feature fusion attention network for single image dehazing. Proc. AAAI Conf. Artif. Intelli. 34(7), 11908ā€“11915 (2020)

    Google Scholar 

  11. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341ā€“2353 (2010)

    MATH  Google Scholar 

  12. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1ā€“8. IEEE (2008)

    Google Scholar 

  13. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522ā€“3533 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., et al.: Aod-net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770ā€“4778 (2017)

    Google Scholar 

  15. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR, pp. 1125ā€“1134 (2017)

    Google Scholar 

  16. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154ā€“169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

  17. Li, B., et al.: End-to-end united video dehazing and detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

    Google Scholar 

  18. Ren, W., et al.: Gated fusion network for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3253ā€“3261 (2018)

    Google Scholar 

  19. Li, R., et al.: Task-oriented network for image dehazing. IEEE Trans. Image Process. 29, 6523ā€“6534 (2020)

    Google Scholar 

  20. Qu, Y., et al.: Enhanced pix2pix dehazing network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8160ā€“8168 (2019)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Li, B., et al.: RESIDE: A Benchmark for Single Image Dehazing. arXiv e-prints (2017)

    Google Scholar 

  23. Liu, Y., et al.: Learning deep priors for image dehazing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2492ā€“2500 (2019)

    Google Scholar 

  24. McCartney, E.J.: Optics of the Atmosphere: Scattering by Molecules and Particles. New York (1976)

    Google Scholar 

  25. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vision 48(3), 233 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, Q., Cui, T., Zhang, M., Zhao, X., Hou, B. (2023). All-in-One Image Dehazing Based on Attention Mechanism. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14268. Springer, Singapore. https://doi.org/10.1007/978-981-99-6486-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6486-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6485-7

  • Online ISBN: 978-981-99-6486-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics