Skip to main content

Digital Twin Model Based Robot-Assisted Needle Insertion Navigation System with Visual and Force Feedback

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14269))

Included in the following conference series:

  • 517 Accesses

Abstract

In needle insertion navigation, most researches focus on intraoperative images based navigation system that provides only visual feedback. Besides, few navigation systems are integrated with insertion robot. In this paper, we proposed a digital twin model based robot-assisted needle insertion navigation system with visual and force feedback. Our system can predict needle deflection, tissue deformation for visual feedback and interaction force for force feedback while insertion robot can help steering needle for accurate insertion. The proposed needle insertion navigation system integrates digital twin model and insertion-assisted robot. A digital twin model of target organ, which includes finite element model and visual model, can be generated based on preoperative CT image to predict needle deflection, tissue deformation and interaction force of planned needle path. Optic-based calibration method for our system is developed. A hybrid spring mapping method based on radial-basis function interpolation and spring-mass model is proposed as well for better visual feedback. The proposed navigation system can provide both visual feedback and force feedback in digital twin model for surgeons while robot can help steering needle to target position. Simulations and experiments are carried out for our navigation system and hybrid spring mapping method. Results show the calibrated system is accurate with 4mm targeting accuracy, which meets clinical accuracy requirements. Hybrid spring mapping method can update the visual model smoothly. Both force and visual feedback can be registered to the digital twin coordinate system, allowing for accurate and consistent feedback for navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ullrich, S., Grottke, O., Rossaint, R., Staat, M., Deserno, T.M., Kuhlen, T.: Virtual needle simulation with haptics for regional anaesthesia. IEEE Virtual Real. 52(7), 1–3 (2010)

    Google Scholar 

  2. Marchal, M., Promayon, E., Troccaz, J.: Comparisons of needle insertion in brachytherapy protocols using a soft tissue discrete model. In: Pediatrics International, p. 153, September 2007

    Google Scholar 

  3. Hing, J.T., Brooks, A.D., Desai, J.P.: Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. In: IEEE International Conference on Robotics and Automation, pp. 619–624 (2006)

    Google Scholar 

  4. Moreta-Martínez, R., Rubio-Pérez, I., García-Sevilla, M., García-Elcano, L., Pascau, J.: Evaluation of optical tracking and augmented reality for needle navigation in sacral nerve stimulation. Comput. Methods Programs Biomed. 224, 106991 (2022). https://doi.org/10.1016/j.cmpb.2022.106991

    Article  Google Scholar 

  5. Wu, K., Li, B., Zhang, Y., Dai, X.: Review of research on path planning and control methods of flexible steerable needle puncture robot. Comput. Assist. Surg. 27(1), 91–112 (2022). https://doi.org/10.1080/24699322.2021.2023647

    Article  Google Scholar 

  6. Glozman, D., Shoham, M.: Image-guided robotic flexible needle steering. IEEE Trans. Rob. 23(3), 459–467 (2007). https://doi.org/10.1109/TRO.2007.898972

    Article  Google Scholar 

  7. Fichtinger, G., et al.: Image overlay guidance for needle insertion in CT scanner. IEEE Trans. Biomed. Eng. 52(8), 1415–1424 (2005). https://doi.org/10.1109/TBME.2005.851493

    Article  Google Scholar 

  8. Krieger, A., et al.: Design of a novel MRI compatible manipulator for image guided prostate interventions. IEEE Trans. Biomed. Eng. 52(2), 306–313 (2005). https://doi.org/10.1109/TBME.2004.840497

    Article  Google Scholar 

  9. Krieger, A., et al.: Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. Joint Publ. IEEE Industrial Electron. Soc. ASME Dyn. Syst. Control Div. 18(1), 273–284 (2012). https://doi.org/10.1109/TMECH.2011.2163523

    Article  Google Scholar 

  10. Tadayyon, H., Lasso, A., Kaushal, A., Guion, P., Fichtinger, G.: Target motion tracking in MRI-guided transrectal robotic prostate biopsy. IEEE Trans. Biomed. Eng. 58(11), 3135–3142 (2011). https://doi.org/10.1109/TBME.2011.2163633

    Article  Google Scholar 

  11. Moreira, P., Boskma, K.J., Misra, S.: Towards MRI-guided flexible needle steering using fiber Bragg grating-based tip tracking. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4849–4854 (2017). https://doi.org/10.1109/ICRA.2017.7989564

  12. Aboofazeli, M., Abolmaesumi, P., Mousavi, P., Fichtinger, G.: A new scheme for curved needle segmentation in three-dimensional ultrasound images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1067–1070 (2009). https://doi.org/10.1109/ISBI.2009.5193240

  13. Zhu, M., Salcudean, S.E.: Real-time image-based b-mode ultrasound image simulation of needles using tensor-product interpolation. IEEE Trans. Med. Imaging 30(7), 1391–1400 (2011). https://doi.org/10.1109/TMI.2011.2121091

    Article  Google Scholar 

  14. Boctor, E.M., Choti, M.A., Burdette, E.C., Webster, R.J., III.: Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 4(2), 180–191 (2008). https://doi.org/10.1002/rcs.184

    Article  Google Scholar 

  15. Romano, J.M., Webster, R.J., Okamura, A.M.: Teleoperation of steerable needles. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 934–939 (2007). https://doi.org/10.1109/ROBOT.2007.363105

  16. Duchemin, G., Maillet, P., Poignet, P., Dombre, E., Pierrot, F.: A hybrid position/force control approach for identification of deformation models of skin and underlying tissues. IEEE Trans. Biomed. Eng. 52(2), 160–170 (2005). https://doi.org/10.1109/TBME.2004.840505

    Article  Google Scholar 

  17. Reed, K.B., Kallem, V., Alterovitz, R., Goldbergxz, K., Okamura, A.M., Cowan, N.J.: Integrated planning and image-guided control for planar needle steering. In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 819–824 (2008). https://doi.org/10.1109/BIOROB.2008.4762833

  18. Hauser, K., Alterovitz, R., Chentanez, N., Okamura, A., Goldberg, K.: Feedback control for steering needles through 3D deformable tissue using helical paths. Robot. Sci. Syst. Online Proc. V, 37 (2009). https://doi.org/10.15607/rss.2009.v.037

  19. Zhao, X., Guo, H., Ye, D., Huo, B.: Comparison of estimation and control methods for flexible needle in 2D. In: 2016 Chinese Control and Decision Conference (CCDC), pp. 5444–5449 (2016). https://doi.org/10.1109/CCDC.2016.7531970

  20. Aggravi, M., Estima, D.A.L., Krupa, A., Misra, S., Pacchierotti, C.: Haptic teleoperation of flexible needles combining 3D ultrasound guidance and needle tip force feedback. IEEE Robot. Autom. Lett. 6(3), 4859–4866 (2021). https://doi.org/10.1109/LRA.2021.3068635

    Article  Google Scholar 

  21. Gao, D., Lei, Y., Lian, B., Yao, B.: Modeling and simulation of flexible needle insertion into soft tissue using modified local constraints. J. Manuf. Sci. Eng. 138(12), 121012 (2016). https://doi.org/10.1115/1.4034134

    Article  Google Scholar 

  22. Du, S., Li, M., Xu, T., Hu, Y., Wang, Z., Lei, Y.: Design and analysis of a novel experiment platform for 3D needle insertion based on orthogonally arranged dual camera. In: International Manufacturing Science and Engineering Conference, vol. Volume 1: Additive Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation; Nano/Micro/Meso Manufacturing (2022). https://doi.org/10.1115/MSEC2022-85764

  23. Amidror, I.: Scattered data interpolation methods for electronic imaging systems: a survey. J. Electron. Imaging 11(2), 157–176 (2002). https://doi.org/10.1117/1.1455013

    Article  Google Scholar 

  24. Guo, Y.Q., et al.: Ultrasound-guided percutaneous needle biopsy for peripheral pulmonary lesions: diagnostic accuracy and influencing factors. Ultrasound Med. Biol. 44(5), 1003–1011 (2018). https://doi.org/10.1016/j.ultrasmedbio.2018.01.016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Scientific Instrument and Equipment Development Project (Grant No. 81827804), Zhejiang Provincial Natural Science Foundation of China (Grant No. LSD19H180004), and Science Fund for Creative Groups of NSFC (Grant No. 51821903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, S. et al. (2023). Digital Twin Model Based Robot-Assisted Needle Insertion Navigation System with Visual and Force Feedback. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14269. Springer, Singapore. https://doi.org/10.1007/978-981-99-6489-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6489-5_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6488-8

  • Online ISBN: 978-981-99-6489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics