Skip to main content

Cooperative Pursuit-Evasion Game for Multi-AUVs in the Ocean Current and Obstacle Environment

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14269))

Included in the following conference series:

  • 1063 Accesses

Abstract

In future ocean battlefields, cooperative pursuit and confrontation using Autonomous Underwater Vehicles (AUVs) will emerge as a crucial combat method. This paper presents a cooperative pursuit-evasion game strategy algorithm, utilizing multi-step Q-learning, to address the challenges posed by ocean currents and obstacles in complex underwater environments. The algorithm enables multiple AUVs to perform cooperative operations and jointly hunt down evading AUVs. By integrating optimal control and game theory, we enhance the learning capabilities of reinforcement learning for discrete behaviors. Through numerical example simulations, we validate the effectiveness of the proposed method. This research marks an important step towards enabling AUVs to operate collaboratively and effectively in future ocean battlefields.

Supported in part by the National Natural Science Foundation of China under Grant 52271321, 61873161, Shanghai Rising-Star Program under Grant 20QA1404200 and Natural Science Foundation of Shanghai under Grant 22ZR1426700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. De Souza, C., Newbury, R., Cosgun, A., Castillo, P., Vidolov, B., Kulić, D.: Decentralized multi-agent pursuit using deep reinforcement learning. IEEE Robot. Autom. Lett. 6(3), 4552–4559 (2021)

    Article  Google Scholar 

  2. Zhu, K., Zhang, T.: Deep reinforcement learning based mobile robot navigation: a review. Tsinghua Sci. Technol. 26(5), 674–691 (2021)

    Article  Google Scholar 

  3. Fang, Y., Huang, Z.W., Pu, J.Y., Zhang, J.S.: AUV position tracking and trajectory control based on fast-deployed deep reinforcement learning method. Ocean Eng. 24514, 110452 (2022)

    Article  Google Scholar 

  4. Xi, M., Yang, J., Wen, J., Liu, H., Li, Y., Song, H.H.: Comprehensive ocean information-enabled AUV path planning via reinforcement learning. IEEE Internet Things J. 9(18), 17440–17451 (2022)

    Article  Google Scholar 

  5. Liu, L., Tian, B., Zhao, X., Zong, Q.: UAV autonomous trajectory planning in target tracking tasks via a DQN approach. In: 2019 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 277–282 (2019)

    Google Scholar 

  6. Xu, G., Wang, Y., Liu, H.: UAV multi-target surveillance cruise trajectory planning based on DQN algorithm. In: 2022 China Automation Congress (CAC), pp. 851–856 (2022)

    Google Scholar 

  7. Wang, Z., Sui, Y., Qin, H., Lu, H.: State super sampling soft actor-critic algorithm for multi-AUV hunting in 3D underwater environment. J. Mar. Sci. Eng. 11(7), 1257 (2023)

    Article  Google Scholar 

  8. Setiaji, B., Pujastuti, E., Filza, M.F., Masruro, A., Pradana, Y.A.: Implementation of reinforcement learning in 2d based games using open AI gym. In: 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), pp. 293–297 (2022)

    Google Scholar 

  9. Frihauf, P., Krstic, M., Basar, T.: Nash equilibrium seeking in noncooperative games. IEEE Trans. Autom. Control 57(5), 1192–1207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feinberg, E.A.: Continuous time discounted jump markov decision processes: a discrete-event approach. Math. Oper. Res. 29(3), 492–524 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feng, Y., Dai, L., Gao, J., Cheng, G.: Uncertain pursuit-evasion game. Soft. Comput. 24(4), 2425–2429 (2020)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, X., Sun, B., Su, Z. (2023). Cooperative Pursuit-Evasion Game for Multi-AUVs in the Ocean Current and Obstacle Environment. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14269. Springer, Singapore. https://doi.org/10.1007/978-981-99-6489-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6489-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6488-8

  • Online ISBN: 978-981-99-6489-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics