Skip to main content

Structural Dynamics Modeling with Modal Parameters and Excitation Decoupling Method Based on Energy Distribution

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14270))

Included in the following conference series:

  • 1128 Accesses

Abstract

Modal parameter is powerful for studying the dynamical characteristics of mechanical systems. For dynamics characteristics observation of chatter suppression of machine tool, dynamics model establishment using modal parameters is essential. To increase the accuracy of the model, its dimension should be increased so that is greater than the number of excitations that can be actually measured. This drawback restricts the development of the structural dynamics model. This paper establishes a modal parameters structural dynamics model of a 3-axis high-precision machine tool and proposes an excitation decoupling method to address this issue. Firstly, a 3-direction 3-order modal structural dynamics model is designed. Based on the proportion of vibration energy, a decoupling method is invented to expand the dimension of external excitation. Secondly, experimental modal analysis is performed on the tool center point of the machine tool, its first 3-order natural frequencies, damping ratios, and dynamic stiffness in spatial orthogonal directions are measured and extracted. Finally, the dynamic responses of the machine tool under free vibration, forced vibration, and mixed vibration are simulated. Their conclusions are verified by vibration theory to ensure the quality of the raised algorithm. This model can balance the modeling quality and solvability of the dynamic equations, leading to brilliant simulation conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, P., et al.: Stiffness modeling of an industrial robot with a gravity compensator considering link weights. Mech. Mach. Theory 161, 104331 (2021)

    Google Scholar 

  2. Xu, P., Gao, Y., Yao, X., Ng, Y.H., Liu, K., Bi, G.: Influence of process parameters and robot postures on surface quality in robotic machining.  Inter. J. Adv. Manuf. Technol. 124(7), 2545–2561 (2023)

    Google Scholar 

  3. Cordes, M., Hintze, W., Altintas, Y.: Chatter stability in robotic milling. Rob. Comput.-Integrated Manuf. 55, 11–18 (2019)

    Article  Google Scholar 

  4. Mohammadi, Y., Ahmadi. K.: In-process frequency response function measurement for robotic milling. In: Experimental Techniques, pp. 1–20 (2022)

    Google Scholar 

  5. Wu, J., Peng, F., Tang, X., Yan, R., Xin, S., Mao, X.: Characterization of milling robot mode shape and analysis of the weak parts causing end vibration. Measurement 203 (2022)

    Google Scholar 

  6. Fei, C., Liu, H., Li, S., Li, H., An, L., Lu, C.: Dynamic parametric modeling-based model updating strategy of aeroengine casings. Chin. J. Aeronaut. 34(12), 145–157 (2021)

    Article  Google Scholar 

  7. Dong, C.Z., Ye, X.W., Jin, T.: Identification of structural dynamic characteristics based on machine vision technology. Measurement 126, 405–416 (2018)

    Article  Google Scholar 

  8. Huynh, H.N., Assadi, H., Dambly, V., Rivière-Lorphèvre, E., Verlinden, O.: Direct method for updating flexible multibody systems applied to a milling robot. Rob. Comput.-Integrated Manuf. 68, 102049 (2021)

    Google Scholar 

  9. Lei, Y., Hou, T., Ding, Y.: Prediction of the posture-dependent tool tip dynamics in robotic milling based on multi-task gaussian process regressions. Rob. Comput.-Integrated Manuf. 81, 102508 (2023)

    Google Scholar 

  10. Ding, Y., Zhu, L., Zhang, X., Ding, H.: A full-discretization method for prediction of milling stability. Int. J. Mach. Tools Manuf 50(5), 502–509 (2010)

    Article  Google Scholar 

  11. Ji, Y., Wang, L., Song, Y., Wang, H., Liu, Z.: Investigation of robotic milling chatter stability prediction under different cutter orientations by an updated full-discretization method. J. Sound Vibration 536 (2022)

    Google Scholar 

  12. Zhou, K., Feng, P., Xu, C., Zhang, J., Wu, Z.: High-order full-discretization methods for milling stability prediction by interpolating the delay term of time-delayed differential equations. Inter. J. Adv. Manuf. Technol. 93(5–8), 2201–2214 (2017)

    Google Scholar 

  13. Guo, K., Zhang, Y., Sun, J.: Towards stable milling: Principle and application of active contact robotic milling. Int. J. Mach. Tools Manuf 182, 103952 (2022)

    Article  Google Scholar 

  14. Chen, G., Li, Y., Liu, X., Yang, B.: Physics-informed Bayesian inference for milling stability analysis. Int. J. Mach. Tools Manuf 167, 103767 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2021A1515110043, Shenzhen Science and Technology Program under Grants JSGG20210420091602007 and GXWD20220811151912002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, K., Gan, J., Kang, X., Xu, P. (2023). Structural Dynamics Modeling with Modal Parameters and Excitation Decoupling Method Based on Energy Distribution. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14270. Springer, Singapore. https://doi.org/10.1007/978-981-99-6492-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6492-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6491-8

  • Online ISBN: 978-981-99-6492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics