Skip to main content

Integrated DLP and DIW 3D Printer for Flexible Electronics

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Abstract

3D printing is an efficient way to fabricate flexible electronics due to its ability to fabricate complex soft structures. However, the development of 3D printing flexible electronics is hindered by the development of multi-material 3D printing system that can integrate digital light processing and direct ink writing printing technologies. In this work, we develop an integrated DLP and DIW 3D printer that can fabricate multimaterial flexible electronics automatically. Complex matrix structures can be fabricated using bottom-up DLP printing, while the conductive electronics can be directly written on the matrix using DIW printing. Flexible electronics strain sensors and a multi-material soft pneumatic actuator are successfully printed. This work paves the way to fabricate flexible electronics automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peng, X., et al.: Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 40, 101911 (2021). https://doi.org/10.1016/j.addma.2021.101911

    Article  Google Scholar 

  2. Li, Z., et al.: Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method. Int. J. Smart Nano Mater. 12(3), 256–268 (2021)

    Article  Google Scholar 

  3. Ge, Q., et al.: 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci. Adv. 7(2), eaba4261 (2021). https://doi.org/10.1126/sciadv.aba4261

    Article  Google Scholar 

  4. González-Henríquez, C.M., Sarabia-Vallejos, M.A., Rodriguez-Hernandez, J.: Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog. Polym. Sci. 94, 57–116 (2019)

    Article  Google Scholar 

  5. Pettersson, A.B.V., et al.: Main clinical use of additive manufacturing (three-dimensional printing) in Finland restricted to the head and neck area in 2016–2017. Scand. J. Surg. 109(2), 166–173 (2020)

    Article  MathSciNet  Google Scholar 

  6. Xu, Y., et al.: In-situ transfer vat photopolymerization for transparent microfluidic device fabrication. Nat. Commun. 13(1), 918 (2022)

    Article  MathSciNet  Google Scholar 

  7. Zheng, B., et al.: Direct freeform laser fabrication of 3d conformable electronics. Adv. Funct. Materials 33(1), 2210084 (2022). https://doi.org/10.1002/adfm.202210084

    Article  Google Scholar 

  8. Mishra, A.K., et al.: Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 5(38), eaaz3918 (2020). https://doi.org/10.1126/scirobotics.aaz3918

    Article  Google Scholar 

  9. Truby, R.L., et al.: Fluidic innervation sensorizes structures from a single build material. Sci. Adv. 8(32), eabq4385 (2022). https://doi.org/10.1126/sciadv.abq4385

    Article  Google Scholar 

  10. Yan, J., et al.: Direct-ink writing 3D printed energy storage devices: from material selectivity, design and optimization strategies to diverse applications. Mater. Today 54, 110–152 (2022)

    Article  Google Scholar 

  11. Cheng, M., Deivanayagam, R., Shahbazian-Yassar, R.: 3D printing of electrochemical energy storage devices: a review of printing techniques and electrode/electrolyte architectures. Batteries Supercaps 3(2), 130–146 (2020)

    Article  Google Scholar 

  12. Rayna, T., Striukova, L.: From rapid prototyping to home fabrication: how 3D printing is changing business model innovation. Technol. Forecast. Soc. Chang. 102, 214–224 (2016)

    Article  Google Scholar 

  13. Urrios, A., et al.: 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab Chip 16(12), 2287–2294 (2016)

    Article  Google Scholar 

  14. Zhang, Y.-F., et al.: Fractal-based stretchable circuits via electric-field-driven microscale 3D printing for localized heating of shape memory polymers in 4D printing. ACS Appl. Mater. Interfaces 13(35), 41414–41423 (2021)

    Article  Google Scholar 

  15. Choi, J.W., et al.: Sequential process optimization for a digital light processing system to minimize trial and error. Sci. Rep. 12(1), 13553 (2022)

    Article  Google Scholar 

  16. Hmeidat, N.S., et al.: Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing. Addit. Manuf. 34, 101385 (2020). https://doi.org/10.1016/j.addma.2020.101385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Q., Zhu, Z., Fan, X., Wang, D. (2023). Integrated DLP and DIW 3D Printer for Flexible Electronics. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14270. Springer, Singapore. https://doi.org/10.1007/978-981-99-6492-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6492-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6491-8

  • Online ISBN: 978-981-99-6492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics