Skip to main content

Constant Force Tracking Using Dynamical System with External Force Estimation

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14271))

Included in the following conference series:

  • 800 Accesses

Abstract

Constant force tracking control strategies are becoming increasingly popular due to their wide range of applications in interactive tasks. These tasks require robots to be able to respond effectively to environmental disturbances. Disturbances in contact tasks are typically divided into two types: large disturbances caused by human-robot interaction, and small disturbances caused by deviations in contact surface position or environmental stiffness. This article proposes an impedance control method using the dynamical system for constant force tracking. Unlike existing solutions, the contact force is estimated through a generalized momentum observer. Therefore, the proposed method can effectively deal with large and small disturbances without requiring additional force/torque sensors on the end-effector. This method enhances the accuracy of constant force tracking under small disturbances and demonstrates excellent robustness and replanning capabilities for trajectories when facing large disturbances. The proposed method's advantages are demonstrated through constant force tracking verification experiments conducted on a six-degree-of-freedom collaborative robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie, Q., Zhao, H., Wang, T., Ding, H.: Adaptive impedance control for robotic polishing with an intelligent digital compliant grinder. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds.) ICIRA 2019. LNCS, vol. 11745, pp. 482–494. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27529-7_41

  2. Wang, T., Zhao, H., Xie, Q., Li, X., Ding, H.: A path planning method under constant contact force for robotic belt grinding. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds.) ICIRA 2019. LNCS, vol. 11745, pp. 35–49. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27529-7_4

  3. Dong, H., Feng, Y., Qiu, C., Chen, I.-M.: Construction of interaction parallel manipulator: towards rehabilitation massage. IEEEASME Trans. Mechatron. 28(1), 372–384 (2023). https://doi.org/10.1109/TMECH.2022.3202694

    Article  Google Scholar 

  4. Zhang, J., Nie, P., Zhang, B.: An improved IDA-PBC method with link-side damping injection and online gravity compensation for series elastic actuator. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236(2), 1244–1254 (2022). https://doi.org/10.1177/09544062211008486

  5. Zhang, J., Zhang, B.: An iterative identification method for the dynamics and hysteresis of robots with elastic joints. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08597-2

    Article  Google Scholar 

  6. Seraji, H., Colbaugh, R.: Force tracking in impedance control. Int. J. Robot. Res. 16(1), 97–117 (1997). https://doi.org/10.1177/027836499701600107

    Article  Google Scholar 

  7. Duan, J., Gan, Y., Chen, M., Dai, X.: Adaptive variable impedance control for dynamic contact force tracking in uncertain environment. Robot. Auton. Syst. 102, 54–65 (2018). https://doi.org/10.1016/j.robot.2018.01.009

    Article  Google Scholar 

  8. Roveda, L., Iannacci, N., Vicentini, F., Pedrocchi, N., Braghin, F., Tosatti, L.M.: Optimal impedance force-tracking control design with impact formulation for interaction tasks. IEEE Robot. Autom. Lett. 1(1), 130–136 (2016). https://doi.org/10.1109/LRA.2015.2508061

    Article  Google Scholar 

  9. Lin, Y., Chen, Z., Yao, B.: Unified motion/force/impedance control for manipulators in unknown contact environments based on robust model-reaching approach. IEEEASME Trans. Mechatron. 26(4), 1905–1913 (2021). https://doi.org/10.1109/TMECH.2021.3081594

    Article  Google Scholar 

  10. Amanhoud, W., Khoramshahi, M., Billard, A.: A dynamical system approach to motion and force generation in contact tasks. In: Robotics: Science and Systems XV, Robotics: Science and Systems Foundation, June 2019. https://doi.org/10.15607/RSS.2019.XV.021

  11. Jung, S., Hsia, T.C., Bonitz, R.G.: Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans. Control Syst. Technol. 12(3), 474–483 (2004). https://doi.org/10.1109/TCST.2004.824320

    Article  Google Scholar 

  12. Kramberger, A., Shahriari, E., Gams, A., Nemec, B., Ude, A., Haddadin, S.: Passivity based iterative learning of admittance-coupled dynamic movement primitives for interaction with changing environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6023–6028, October 2018. https://doi.org/10.1109/IROS.2018.8593647

  13. Wahballa, H., Duan, J., Dai, Z.: Constant force tracking using online stiffness and reverse damping force of variable impedance controller for robotic polishing. Int. J. Adv. Manuf. Technol. 121(9), 5855–5872 (2022). https://doi.org/10.1007/s00170-022-09599-x

    Article  Google Scholar 

  14. Amanhoud, W., Khoramshahi, M., Bonnesoeur, M., Billard, A.: Force adaptation in contact tasks with dynamical systems. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, pp. 6841–6847. IEEE, May 2020. https://doi.org/10.1109/ICRA40945.2020.9197509

  15. De Luca, A., Mattone, R.: Actuator failure detection and isolation using generalized momenta. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 1, pp. 634–639, September 2003 https://doi.org/10.1109/ROBOT.2003.1241665

  16. Zhang, J., Nie, P., Chen, Y., Zhang, B.: A joint acceleration estimation method based on a high-order disturbance observer. IEEE Robot. Autom. Lett. 7(4), 12615–12622 (2022). https://doi.org/10.1109/LRA.2022.3220501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, J., Chen, Y., Zhang, J., Nie, P., Zhang, B. (2023). Constant Force Tracking Using Dynamical System with External Force Estimation. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics