Skip to main content

Nonlinear Disturbance Observer-Based Continuous Fixed-time Tracking Control for Uncertain Robotic Systems

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14271))

Included in the following conference series:

  • 752 Accesses

Abstract

This paper proposes a nonlinear disturbance observer-based continuous fixed-time tracking control scheme for uncertain robotic systems. A nonlinear disturbance observer is constructed to estimate and reject the lumped disturbance of the control systems in real-time. It exhibits good results in terms of disturbance estimating and computational cost. Based on the disturbance observer, a fixed-time tracking control scheme for the uncertain robotic system is presented. Compared with the existing fast nonsingular integral terminal sliding mode controller, the proposed controller ensures local fixed-time convergence of both velocity tracking error and position tracking error. The stability and fixed-time convergence of the proposed controller are analyzed using the Lyapunov theory. Finally, comparative simulations of both the numerical and application examples are conducted to verify the proposed control schemes’ effectiveness, indicating that the continuous fixed-time tracking control scheme can be used effectively for robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, X., Park, J.H., Dong, H., Guo, L., Lin, X.: Robust adaptive nonsingular terminal sliding mode control for automatic train operation. IEEE Trans. Syst. Man Cybern. Syst. 49(12), 2406–2415 (2019)

    Article  Google Scholar 

  2. Rahmani, M., Rahman, M.H.: Adaptive neural network fast fractional sliding mode control of a 7-DOF exoskeleton robot. Int. J. Control. Autom. Syst. 18(1), 124–133 (2020)

    Article  Google Scholar 

  3. Qiao, L., Zhang, W.: Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans. Ind. Inf. 16(2), 1248–1258 (2020)

    Article  Google Scholar 

  4. Ren, C., Li, X., Yang, X., Ma, S.: Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation. IEEE Trans. Ind. Electron. 66(12), 9480–9489 (2019)

    Article  Google Scholar 

  5. Li, P., Ma, J., Zheng, Z., Geng, L.: Fast nonsingular integral terminal sliding mode control for nonlinear dynamical systems. In: Proceedings of the IEEE Conference on Decision and Control, vol. 2015, pp. 4739–4746, February 2014

    Google Scholar 

  6. Su, Y., Zheng, C., Mercorelli, P.: Robust approximate fixed-time tracking control for uncertain robot manipulators. Mech. Syst. Signal Process. 135 (2020)

    Google Scholar 

  7. Su, Y., Zheng, C.: Fixed-time inverse dynamics control for robot manipulators. J. Dyn.Syst. Meas. Control Trans. ASME 141(6), 1–32 (2019)

    Article  Google Scholar 

  8. Mohammadi, A., Tavakoli, M., Marquez, H.J., Hashemzadeh, F.: Nonlinear disturbance observer design for robotic manipulators. Control. Eng. Pract. 21(3), 253–267 (2013)

    Article  Google Scholar 

  9. Homayounzade, M., Khademhosseini, A.: Disturbance observer-based trajectory following control of robot manipulators. Int. J. Control. Autom. Syst. 17(1), 203–211 (2019)

    Article  Google Scholar 

  10. Sun, T., Cheng, L., Wang, W., Pan, Y.: Semiglobal exponential control of Euler-Lagrange systems using a sliding-mode disturbance observer. Automatica 112, 108677 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rabiee, H., Ataei, M., Ekramian, M.: Continuous nonsingular terminal sliding mode control based on adaptive sliding mode disturbance observer for uncertain nonlinear systems. Automatica 109, 108515 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haddadin, S., De Luca, A., Albu-Schäffer, A.: Robot collisions: a survey on detection, isolation, and identification. IEEE Trans. Robot. 33(6), 1292–1312 (2017)

    Article  Google Scholar 

  13. Ren, T., Dong, Y., Wu, D., Chen, K.: Collision detection and identification for robot manipulators based on extended state observer. Control Eng. Pract. 79, 144–153 (2018)

    Article  Google Scholar 

  14. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  15. Zhao, Z.L., Guo, B.Z.: A nonlinear extended state observer based on fractional power functions. Automatica 81, 286–296 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 62173047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhang, W., Zhou, Y., Tao, Y., Zhu, M. (2023). Nonlinear Disturbance Observer-Based Continuous Fixed-time Tracking Control for Uncertain Robotic Systems. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics