Skip to main content

Predefined-Time External Force Estimation for Legged Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14271))

Included in the following conference series:

  • 876 Accesses

Abstract

Legged robots have recently received widespread attention, and the online measurement/estimation of external torque/force places a vital role on the robust and stable controller design for legged robots. Although the external torque/force can be measured by installing force sensors, the reliability, cost and mechanical feasibility are concerning issues. This paper proposed a sensor-less external torque/force estimation for legged robot based on measurable joint position, velocity and torque. A predefined-time momentum observer (PTO) is proposed to achieve the convergence of the estimation error within the predefined time. Finally, a series of simulations and experiments are implemented to show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, D., Carlo, J.D., Katz, B., Bledt, G., Kim, S.: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv arXiv:1909.06586 (2019)

  2. Klemm, V., et al.: LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robot. Autom. Lett. 5(2), 3745–3752 (2020)

    Article  Google Scholar 

  3. Chao, Z.A., Tl, A., Shuang, S., Envelope, J., Qhm, B.: Dynamic wheeled motion control of wheel-biped transformable robots. Biomimetic Intell. Robot. 2(2) (2021)

    Google Scholar 

  4. Grandia, R., Jenelten, F., Yang, S., Farshidian, F., Hutter, M.: Perceptive locomotion through nonlinear model predictive control (2022)

    Google Scholar 

  5. Aceituno-Cabezas, B., et al.: Simultaneous contact, gait, and motion planning for robust multilegged locomotion via mixed-integer convex optimization. IEEE Robot. Autom. Lett. 3(3), 2531–2538 (2018)

    Google Scholar 

  6. Hereid, A., Hubicki, C.M., Cousineau, E.A., Ames, A.D.: Dynamic humanoid locomotion: a scalable formulation for HZD gait optimization. IEEE Trans. Robot. 34(2), 370–387 (2018)

    Article  Google Scholar 

  7. Kaneko, K., et al.: Slip observer for walking on a low friction floor. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 634–640 (2005)

    Google Scholar 

  8. Maravgakis, M., Argiropoulos, D.E., Piperakis, S., Trahanias, P.E.: Probabilistic contact state estimation for legged robots using inertial information. arXiv, abs/2303.00538 (2023)

    Google Scholar 

  9. Liu, Q., Yuan, B., Wang, Y.: Online learning for foot contact detection of legged robot based on data stream clustering. Front. Bioeng. Biotechnol. 9 (2022)

    Google Scholar 

  10. Wisth, D., Camurri, M., Fallon, M.F.: Robust legged robot state estimation using factor graph optimization. IEEE Robot. Autom. Lett. 4, 4507–4514 (2019)

    Article  Google Scholar 

  11. Bloesch, M., Gehring, C., Fankhauser, P., Hutter, M., Hoepflinger, M.A., Siegwart, R.: State estimation for legged robots on unstable and slippery terrain. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6058–6064 (2013)

    Google Scholar 

  12. Dini, N., Majd, V.J., Edrisi, F., Attar, M.: Estimation of external forces acting on the legs of a quadruped robot using two nonlinear disturbance observers. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), pp. 72–77 (2016)

    Google Scholar 

  13. Varin, P., Kuindersma, S.: A constrained Kalman filter for rigid body systems with frictional contact. In: Workshop on the Algorithmic Foundations of Robotics (2018)

    Google Scholar 

  14. Teng, S., Mueller, M.W., Sreenath, K.: Legged robot state estimation in slippery environments using invariant extended Kalman filter with velocity update. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3104–3110 (2021)

    Google Scholar 

  15. Morlando, V., Teimoorzadeh, A., Ruggiero, F.: Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots. Mech. Mach. Theory 164, 104412 (2021)

    Article  Google Scholar 

  16. Kim, J.-H., et al.: Legged robot state estimation with dynamic contact event information. IEEE Robot. Autom. Lett. 6(4), 6733–6740 (2021)

    Article  MathSciNet  Google Scholar 

  17. Shen, Y., Huang, Y., Gu, J.: Global finite-time observers for lipschitz nonlinear systems. IEEE Trans. Autom. Control 56(2), 418–424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, P., Kao, Y., Hu, J., Niu, B., Xia, H., Wang, C.: Finite-time observer-based sliding-mode control for Markovian jump systems with switching chain: average dwell-time method. IEEE Trans. Cybern. 53(1), 248–261 (2023)

    Article  Google Scholar 

  19. Zhou, S., Guo, K., Yu, X., Guo, L., Xie, L.: Fixed-time observer based safety control for a quadrotor UAV. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2815–2825 (2021)

    Article  Google Scholar 

  20. Moreno, J.A.: Arbitrary-order fixed-time differentiators. IEEE Trans. Autom. Control 67(3), 1543–1549 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Holloway, J., Krstic, M.: Prescribed-time observers for linear systems in observer canonical form. IEEE Trans. Autom. Control 64(9), 3905–3912 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Spong, M., Hutchinson, S., Vidyasagar, M., Skaar, S.B.: Robot modeling and control. IEEE Trans. Autom. Control 52, 378–379 (2007)

    Google Scholar 

  24. Garofalo, G., Mansfeld, N., Jankowski, J., Ott, C.: Sliding mode momentum observers for estimation of external torques and joint acceleration. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6117–6123 (2019)

    Google Scholar 

  25. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiménez-Rodríguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Loukianov, A.G.: A Lyapunov-like characterization of predefined-time stability. IEEE Trans. Autom. Control 65(11), 4922–4927 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khalil, H.K.: High-Gain Observers in Nonlinear Feedback Control. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyuan Cai or Danfu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, P., Liu, D., Zhu, L. (2023). Predefined-Time External Force Estimation for Legged Robots. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics