Abstract
Legged robots have recently received widespread attention, and the online measurement/estimation of external torque/force places a vital role on the robust and stable controller design for legged robots. Although the external torque/force can be measured by installing force sensors, the reliability, cost and mechanical feasibility are concerning issues. This paper proposed a sensor-less external torque/force estimation for legged robot based on measurable joint position, velocity and torque. A predefined-time momentum observer (PTO) is proposed to achieve the convergence of the estimation error within the predefined time. Finally, a series of simulations and experiments are implemented to show the effectiveness of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Kim, D., Carlo, J.D., Katz, B., Bledt, G., Kim, S.: Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv arXiv:1909.06586 (2019)
Klemm, V., et al.: LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops. IEEE Robot. Autom. Lett. 5(2), 3745–3752 (2020)
Chao, Z.A., Tl, A., Shuang, S., Envelope, J., Qhm, B.: Dynamic wheeled motion control of wheel-biped transformable robots. Biomimetic Intell. Robot. 2(2) (2021)
Grandia, R., Jenelten, F., Yang, S., Farshidian, F., Hutter, M.: Perceptive locomotion through nonlinear model predictive control (2022)
Aceituno-Cabezas, B., et al.: Simultaneous contact, gait, and motion planning for robust multilegged locomotion via mixed-integer convex optimization. IEEE Robot. Autom. Lett. 3(3), 2531–2538 (2018)
Hereid, A., Hubicki, C.M., Cousineau, E.A., Ames, A.D.: Dynamic humanoid locomotion: a scalable formulation for HZD gait optimization. IEEE Trans. Robot. 34(2), 370–387 (2018)
Kaneko, K., et al.: Slip observer for walking on a low friction floor. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 634–640 (2005)
Maravgakis, M., Argiropoulos, D.E., Piperakis, S., Trahanias, P.E.: Probabilistic contact state estimation for legged robots using inertial information. arXiv, abs/2303.00538 (2023)
Liu, Q., Yuan, B., Wang, Y.: Online learning for foot contact detection of legged robot based on data stream clustering. Front. Bioeng. Biotechnol. 9 (2022)
Wisth, D., Camurri, M., Fallon, M.F.: Robust legged robot state estimation using factor graph optimization. IEEE Robot. Autom. Lett. 4, 4507–4514 (2019)
Bloesch, M., Gehring, C., Fankhauser, P., Hutter, M., Hoepflinger, M.A., Siegwart, R.: State estimation for legged robots on unstable and slippery terrain. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6058–6064 (2013)
Dini, N., Majd, V.J., Edrisi, F., Attar, M.: Estimation of external forces acting on the legs of a quadruped robot using two nonlinear disturbance observers. In: 2016 4th International Conference on Robotics and Mechatronics (ICROM), pp. 72–77 (2016)
Varin, P., Kuindersma, S.: A constrained Kalman filter for rigid body systems with frictional contact. In: Workshop on the Algorithmic Foundations of Robotics (2018)
Teng, S., Mueller, M.W., Sreenath, K.: Legged robot state estimation in slippery environments using invariant extended Kalman filter with velocity update. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3104–3110 (2021)
Morlando, V., Teimoorzadeh, A., Ruggiero, F.: Whole-body control with disturbance rejection through a momentum-based observer for quadruped robots. Mech. Mach. Theory 164, 104412 (2021)
Kim, J.-H., et al.: Legged robot state estimation with dynamic contact event information. IEEE Robot. Autom. Lett. 6(4), 6733–6740 (2021)
Shen, Y., Huang, Y., Gu, J.: Global finite-time observers for lipschitz nonlinear systems. IEEE Trans. Autom. Control 56(2), 418–424 (2011)
Zhang, P., Kao, Y., Hu, J., Niu, B., Xia, H., Wang, C.: Finite-time observer-based sliding-mode control for Markovian jump systems with switching chain: average dwell-time method. IEEE Trans. Cybern. 53(1), 248–261 (2023)
Zhou, S., Guo, K., Yu, X., Guo, L., Xie, L.: Fixed-time observer based safety control for a quadrotor UAV. IEEE Trans. Aerosp. Electron. Syst. 57(5), 2815–2825 (2021)
Moreno, J.A.: Arbitrary-order fixed-time differentiators. IEEE Trans. Autom. Control 67(3), 1543–1549 (2022)
Holloway, J., Krstic, M.: Prescribed-time observers for linear systems in observer canonical form. IEEE Trans. Autom. Control 64(9), 3905–3912 (2019)
Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)
Spong, M., Hutchinson, S., Vidyasagar, M., Skaar, S.B.: Robot modeling and control. IEEE Trans. Autom. Control 52, 378–379 (2007)
Garofalo, G., Mansfeld, N., Jankowski, J., Ott, C.: Sliding mode momentum observers for estimation of external torques and joint acceleration. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6117–6123 (2019)
Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)
Jiménez-RodrÃguez, E., Muñoz-Vázquez, A.J., Sánchez-Torres, J.D., Defoort, M., Loukianov, A.G.: A Lyapunov-like characterization of predefined-time stability. IEEE Trans. Autom. Control 65(11), 4922–4927 (2020)
Khalil, H.K.: High-Gain Observers in Nonlinear Feedback Control. Society for Industrial and Applied Mathematics, Philadelphia, PA (2017)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Cai, P., Liu, D., Zhu, L. (2023). Predefined-Time External Force Estimation for Legged Robots. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_46
Download citation
DOI: https://doi.org/10.1007/978-981-99-6495-6_46
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6494-9
Online ISBN: 978-981-99-6495-6
eBook Packages: Computer ScienceComputer Science (R0)