Skip to main content

A Lightweight Manipulator Design for Quadruped Robots and Stable Locomotion Control with the Manipulator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14271))

Included in the following conference series:

  • 807 Accesses

Abstract

In order to enhance the manipulation capabilities of quadruped robots, numerous research have explored the integration of manipulators onto these robots. However, most manipulators encounter difficulties in harmonizing with quadruped robots, resulting in compromised locomotion performance. This paper addresses the challenge of stable locomotion and manipulation for quadruped robots equipped with manipulators. Firstly, a lightweight manipulator designed specifically for quadruped robots is introduced, featuring a generous working space and the capability to perform tasks such as torsion. Secondly, a hierarchical optimization-based whole-body control which mainly includes whole-body dynamics and trajectory tracking is proposed to enhance the stability of the quadruped robot in complex environments. Finally, the effectiveness of the proposed methodology is validated through physical prototype experiments.

This work was supported by the National Key Research Program of China 2018AAA0100103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, L., et al.: Design and dynamic locomotion control of quadruped robot with perception-less terrain adaptation. Cyborg Bionic Syst. 2022 (2022)

    Google Scholar 

  2. Tsvetkov, Y., Ramamoorthy, S.: A novel design and evaluation of a dactylus-equipped quadruped robot for mobile manipulation. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1633–1638. IEEE (2022)

    Google Scholar 

  3. Cheng, X., Kumar, A., Pathak, D.: Legs as Manipulator: Pushing Quadrupedal Agility Beyond Locomotion. arXiv:2303.11330 (2023)

  4. Ferrolho, H., Merkt, W., Ivan, V., et al.: Optimizing dynamic trajectories for robustness to disturbances using polytopic projections. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7477–7484. IEEE (2020)

    Google Scholar 

  5. Bellicoso, C.D., Krämer, K., Stäuble, M., et al.: Alma-articulated locomotion and manipulation for a torque-controllable robot. In: 2019 IEEE International Conference on Robotics and Automation (ICRA), pp. 8477–8483. IEEE (2019)

    Google Scholar 

  6. Ferrolho, H., Ivan, V., Merkt, W., et al.: Roloma: Robust loco-manipulation for quadruped robots with arms. arXiv preprint arXiv:2203.01446 (2022)

  7. Ewen, P., Sleiman, J.P., Chen, Y., et al.: Generating continuous motion and force plans in real-time for legged mobile manipulation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4933–4939. IEEE (2021)

    Google Scholar 

  8. Xie, A., Chen, T., Rong, X., et al.: A robust and compliant framework for legged mobile manipulators using virtual model control and whole-body control. Robot. Auton. Syst. 164, 104411 (2023)

    Article  Google Scholar 

  9. Zimmermann, S., Poranne, R., Coros, S.: Go fetch!-dynamic grasps using boston dynamics spot with external robotic arm. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 4488–4494. IEEE (2021)

    Google Scholar 

  10. Murphy, M.P., Stephens, B., Abe, Y., Rizzi, A.A.: High degree-of-freedom dynamic manipulation. SPIE 8387, 339–348 (2012)

    Google Scholar 

  11. Rehman, B.U., Focchi, M., Lee, J., Dallali, H., Caldwell, D.G., Semini, C.: Towards a multi-legged mobile manipulator. In: 2016 IEEE International Conference on Robotics and Automation, pp. 3618–3624 (2016)

    Google Scholar 

  12. Sleiman, J.P., Farshidian, F., Minniti, M.V., Hutter, M.: A unified MPC framework for whole-body dynamic locomotion and manipulation. IEEE Robot. Autom. Lett. 6, 4688–4695 (2021)

    Article  Google Scholar 

  13. SpotMini: https://www.youtube.com/watch?v=XnZH4izf_rI. Accessed May 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Botao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, Z. et al. (2023). A Lightweight Manipulator Design for Quadruped Robots and Stable Locomotion Control with the Manipulator. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_48

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics