Skip to main content

Soft Humanoid Finger with Magnetic Tactile Perception

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Abstract

The human skin is equipped with various receptors that sense external stimuli and provide tactile information to the body. Similarly, robots require sensors to perceive their environment and interact with it. Inspired by the bionics of human skin, we have developed a magnetic haptic tactile sensor that mimics the softness of the human finger skin. Our magnetic finger abdomen deforms when it comes in contact with an object, causing a change in magnetic flux density. The three-dimensional Hall sensor detects this change in magnetic field signal, allowing us to accurately measure the normal force applied to the sensor. There is a linear relationship between the z-axis magnetic field signal and the magnitude of the normal force (R\(^{2}\)  > 0.988). Our single bionic magnetic finger abdomen sensor has a Root Mean Squared Error of only 0.18N for the detection range of 0–10N, and force measurement accuracy of up to 95.5%. Our soft sensory skin is simple to manufacture, interchangeable, and customizable to meet the needs of haptic soft surfaces. Experimental results show that the sensor can accurately predict the normal force and the soft humanoid finger can stabilize the envelope grasp. This study provides a new idea for the design of magneto-tactile sensors, which is of great significance for the study of dexterous hand-grasping operations.

This work was supported by the National Natural Science Foundation of China (Grant No. 62173197, U22B2042), Tsinghua University Initiative Scientific Research Program with 2022Z11QYJ002 and the Anhui Provincial Natural Science Foundation of China(Grant no. 2108085MF224).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chin, L., Yuen, M.C., Lipton, J., Trueba, L.H., Kramer-Bottiglio, R., Rus, D.: A simple electric soft robotic gripper with high-deformation tactile feedback. In: 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 2765–2771 (2019). https://doi.org/10.1109/ICRA.2019.8794098

  2. Chen, W., Khamis, H., Birznieks, I., Lepora, N.F., Redmond, S.J.: Tactile sensors for friction estimation and incipient slip detection-toward dexterous robotic manipulation: a review, IEEE Sensors J. 18(22), 9049–9064 (2018)

    Google Scholar 

  3. Torres-Jara, E., Natale, L.: Sensitive manipulation: manipulation through tactile feedback, Int. J. Humanoid Robot. 15(01), 1850012 (2018)

    Google Scholar 

  4. Tomo, T.P., et al.: A new silicone structure for uSkin-A soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot iCub. IEEE Robot. Autom. Lett. 3(3), 2584–2591 (2018). https://doi.org/10.1109/LRA.2018.2812915

    Article  Google Scholar 

  5. Bartolozzi, C., Natale, L., Nori, F.: Robots with a sense of touch. Nature Mater. 15, 921–925 (2016). https://doi.org/10.1038/nmat4731

  6. Soter, G., Conn, A., Hauser, H., Rossiter, J.: Bodily aware soft robots: integration of proprioceptive and exteroceptive sensors In: 2018 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2018), pp. 2448–2453 (2018)

    Google Scholar 

  7. Chin, L., Lipton, J., Yuen, M.C., Kramer-Bottiglio, R., Rus, D.: Automated recycling separation enabled by soft robotic material classification. In: 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (IEEE, 2019), pp. 102–107 (2019)

    Google Scholar 

  8. Thuruthel, T.G., Shih, B., Laschi, C., Tolley, M.T.: Soft robot perception using embedded soft sensors and recurrent neural networks. Sci. Robot. 4, eaav1488 (2019)

    Google Scholar 

  9. Justus, K.B., et al.: A biosensing soft robot: autonomous parsing of chemical signals through integrated organic and inorganic interfaces. Sci. Robot. 4, eaax0765 (2019)

    Google Scholar 

  10. Farrow, N., Correll, N.: A soft pneumatic actuator that can sense grasp and touch. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE), pp. 2317–2323 (2015)

    Google Scholar 

  11. Yan, Y., et al.: Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 6, eabc8801(2021). abc8801 https://doi.org/10.1126/scirobotics

  12. Shih, B., Mayeda, J., Huo, Z., Christianson, C., Tolley, M.T.: 3D printed resistive soft sensors. In: Proceedings of IEEE International Conference Soft Robotics, pp. 152–157 (2018)

    Google Scholar 

  13. Frutiger, A., et al.: Capacitive soft strain sensors via multicore-shell fiber printing, Adv. Mater. 27(15), 2440–2446 (2015)

    Google Scholar 

  14. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Robust proprioceptive grasping with a soft robot hand. Auton Robots. 43(3), 681–96 (2019)

    Article  Google Scholar 

  15. Majidi, C.: Soft-matter engineering for soft robotics. Adv. Mater. Technol. 4, 1800477 (2019). https://doi.org/10.1002/admt.201800477

  16. Lenz, J., Edelstein, S.: Magnetic sensors and their applications, IEEE Sensors J. 6(3), 631–649 (2006)

    Google Scholar 

  17. Zhang, Q., Wang, Y.L., Xia, Y., Kirk, T.V., Chen, X.D.: Textile-only capacitive sensors with a lockstitch structure for facile integration in any areas of a fabric, ACS Sens. 5, 1535–1540 (2020). https://doi.org/10.1021/acssensors.0c00210

  18. Li, Y., et al.: Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities, Adv. Funct. Mater. 29, 1–10 (2019). https://doi.org/10.1002/adfm.201904977

  19. Huang, Z., et al.: Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018)

    Google Scholar 

  20. Piacenza, P., Sherman, S., Ciocarlie, M.: Data-driven super-resolution on a tactile dome. IEEE Robot. Autom. Lett. 3, 1434–1441 (2018)

    Article  Google Scholar 

  21. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: tactile identification of objects using a modular soft robotic gripper. In: Proceedings of IEEE/RSJ International Conference Intelligent Robots System, pp. 1698–1705 (2015)

    Google Scholar 

  22. Choi, C., Schwarting, W., DelPreto, J., Rus, D.: Learning object grasping for soft robot hands, IEEE Robot. Autom. Lett. 3(3), 2370–2377 (2018)

    Article  Google Scholar 

  23. Hellebrekers, T., Chang, N., Chin, K., Ford, M.J., Kroemer, O., Majidi, C.: Soft magnetic tactile skin for continuous force and location estimation using neural networks. IEEE Robot. Autom. Lett. 5(3), 3892–3898 (2020). https://doi.org/10.1109/LRA.2020.2983707

    Article  Google Scholar 

  24. Chi, C., Sun, X., Xue, N., Li, T., Liu, C.: Recent progress in technologies for tactile sensors Sensors 18(4), 948 (2018)

    Google Scholar 

  25. Hu, H., Zhang, C., Pan, C., et al.: Wireless flexible magnetic tactile sensor with super-resolution in large-areas. ACS Nano 16(11), 19271–80 (2022)

    Article  Google Scholar 

  26. Wang, H., Totaro, M., Beccai, L.: Toward perceptive soft robots: progress and challenges. Adv. Sci. 5, 1800541 (2018)

    Article  Google Scholar 

  27. Chin, K., Hellebrekers, T., Majidi, C.: Machine learning for soft robotic sensing and control. Adv. Intell. Syst. 2020, 1900171 (2020)

    Article  Google Scholar 

  28. Shah, D.S., Yuen, M.C., Tilton, L.G., Yang, E.J., Kramer-Bottiglio, R.: Morphing robots using robotic skins that sculpt clay. IEEE Robot. Autom. Lett. 4, 2204–2211 (2019)

    Article  Google Scholar 

  29. Fang, B., Xia, Z., Sun, F., et al.: Soft magnetic fingertip with particle-jamming structure for tactile perception and grasping. IEEE Trans. Industr. Electron. 70(6), 6027–35 (2023)

    Article  Google Scholar 

  30. Xia, Z., Fang, B., Sun, F., et al.: Contact shape and pose recognition: utilizing a multipole magnetic tactile sensor with a metalearning model. IEEE Robot. Autom. Mag. 29(4), 127–37 (2022)

    Article  Google Scholar 

Download references

Funding

CIE-Tencent Robotics X Rhino-Bird Focused Research Program under Grant 2022-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Shan or Bin Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, X., Shan, J., Xia, Z., Sun, F., Fang, B. (2023). Soft Humanoid Finger with Magnetic Tactile Perception. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics