Skip to main content

Learning Tactilemotor Policy for Robotic Cable Following via Sim-to-Real Transfer

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14271))

Included in the following conference series:

  • 778 Accesses

Abstract

Manipulating deformable liner objects, such as following a cable, is easy for human beings but presents a significant challenge for robots. Moreover, learning strategies in real world can bring damage to sensors and pose difficulties for data collection. In this paper, we propose a Reinforcement Learning method to generalize cable following skills from simulation to reality. The agent uses an end-to-end approach, directly inputting raw sensor data into the framework to generate robot actions. Meanwhile, a Sim-to-Real network is applied to enable the tactilemotor policy transfer. In particular, we use different perception modalities and representations as components of the observations and investigate how these factors impact cable following results. Our extensive experiments in simulation demonstrate that the success rate of cable following can be up to 81.85% when both visual and tactile features are put into the policy, compared to using only one type of modality. The proposed method provides valuable insights for deformable objects manipulating scenarios.

C. Sun and B. Duan—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ha, K.H., Huh, H., Li, Z., Lu, N.: Soft capacitive pressure sensors: trends, challenges, and perspectives. ACS Nano 16(3), 3442–3448 (2022)

    Article  Google Scholar 

  2. Lin, W., Wang, B., Peng, G., Shan, Y., Hu, H., Yang, Z.: Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+ column electrodes for spatiotemporally distinguishing diverse stimuli. Adv. Sci. 8(3), 2002817 (2021). https://doi.org/10.1002/advs.202002817

    Article  Google Scholar 

  3. Lepora, N.F., Lin, Y., Money-Coomes, B., Lloyd, J.: DigiTac: a digit-tactip hybrid tactile sensor for comparing low-cost high-resolution robot touch. IEEE Robot. Autom. Lett. 7(4), 9382–9388 (2022)

    Article  Google Scholar 

  4. Yuan, W., Dong, S., Adelson, E.H.: GelSight: high-resolution robot tactile sensors for estimating geometry and force. Sensors 17(12), 2762 (2017). https://doi.org/10.3390/s17122762

    Article  Google Scholar 

  5. Yan, M., Zhu, Y., Jin, N., Bohg, J.: Self-supervised learning of state estimation for manipulating deformable linear objects. IEEE Robot. Autom. Lett. 5(2), 2372–2379 (2020)

    Article  Google Scholar 

  6. Pecyna, L., Dong, S., Luo, S.: Visual-tactile multimodality for following deformable linear objects using reinforcement learning. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3987–3994. IEEE, October 2022

    Google Scholar 

  7. Zhao, Y., Jing, X., Qian, K., Gomes, D.F., Luo, S.: Skill generalization of tubular object manipulation with tactile sensing and Sim2Real learning. Robot. Auton. Syst. 160, 104321 (2023). https://doi.org/10.1016/j.robot.2022.104321

    Article  Google Scholar 

  8. Javdani, S., Tandon, S., Tang, J., O’Brien, J.F., Abbeel, P.: Modeling and perception of deformable one-dimensional objects. In 2011 IEEE International Conference on Robotics and Automation, pp. 1607–1614. IEEE, May 2011

    Google Scholar 

  9. Lui, W.H., Saxena, A.: Tangled: learning to untangle ropes with RGB-D perception. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 837–844. IEEE, November 2013

    Google Scholar 

  10. Khalifa, A., Palli, G.: New model-based manipulation technique for reshaping deformable linear objects. Int. J. Adv. Manuf. Technol., 1–9 (2022)

    Google Scholar 

  11. Yu, M., Zhong, H., Zhong, F., Li, X.: Adaptive control for robotic manipulation of deformable linear objects with offline and online learning of unknown models. arXiv preprint arXiv:2107.00194 (2021)

  12. Hellman, R.B., Tekin, C., van der Schaar, M., Santos, V.J.: Functional contour-following via haptic perception and reinforcement learning. IEEE Trans. Haptics 11(1), 61–72 (2017)

    Article  Google Scholar 

  13. She, Y., Wang, S., Dong, S., Sunil, N., Rodriguez, A., Adelson, E.: Cable manipulation with a tactile-reactive gripper. Int. J. Robot. Res. 40(12–14), 1385–1401 (2021)

    Article  Google Scholar 

  14. Zhao, W., Queralta, J.P., Westerlund, T.: Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737–744. IEEE, December 2020

    Google Scholar 

  15. Chebotar, Y., et al.: Closing the sim-to-real loop: adapting simulation randomization with real world experience. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8973–8979. IEEE, May 2019

    Google Scholar 

  16. Andrychowicz, O.M., et al.: Learning dexterous in-hand manipulation. Int. J. Robot. Res. 39(1), 3–20 (2020)

    Google Scholar 

  17. Niu, H., Hu, J., Cui, Z., Zhang, Y.: Dr2l: Surfacing corner cases to robustify autonomous driving via domain randomization reinforcement learning. In: Proceedings of the 5th International Conference on Computer Science and Application Engineering, pp. 1–8, October 2021

    Google Scholar 

  18. James, S., et al.: Sim-to-real via sim-to-sim: data-efficient robotic grasping via randomized-to-canonical adaptation networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12627–12637 (2019)

    Google Scholar 

  19. Church, A., Lloyd, J., Lepora, N.F.: Tactile sim-to-real policy transfer via real-to-sim image translation. In: Conference on Robot Learning, pp. 1645–1654. PMLR, January 2022

    Google Scholar 

  20. Jianu, T., Gomes, D.F., Luo, S.: Reducing tactile Sim2Real domain gaps via deep texture generation networks. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 8305–8311. IEEE, May 2022

    Google Scholar 

  21. Chen, W., et al.: Bidirectional sim-to-real transfer for GelSight tactile sensors with CycleGAN. IEEE Robot. Autom. Lett. 7(3), 6187–6194 (2022)

    Article  MathSciNet  Google Scholar 

  22. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033. IEEE, October 2012

    Google Scholar 

  23. Si, Z., Yuan, W.: Taxim: an example-based simulation model for GelSight tactile sensors. IEEE Robot. Autom. Lett. 7(2), 2361–2368 (2022)

    Article  Google Scholar 

  24. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870. PMLR, July 2018

    Google Scholar 

  25. Haarnoja, T., et al.: Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905 (2018)

Download references

Acknowledgments

This work is sponsored by the Natural Science Foundation of Jiangsu Province, China (No. BK20201264), Zhejiang Lab (No. 2022NB0AB02), and the National Natural Science Foundation of China (No. 61573101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, C., Duan, B., Qian, K., Zhao, Y. (2023). Learning Tactilemotor Policy for Robotic Cable Following via Sim-to-Real Transfer. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14271. Springer, Singapore. https://doi.org/10.1007/978-981-99-6495-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6495-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6494-9

  • Online ISBN: 978-981-99-6495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics