Skip to main content

6D Pose Estimation Method of Metal Parts for Robotic Grasping Based on Semantic-Level Line Matching

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14273))

Included in the following conference series:

  • 1046 Accesses

Abstract

The six-dimensional (6D) pose estimation of metal parts is a key technology for robotic grasping in intelligent manufacturing. However, current methods matching edge or geometric features suffer from unstable feature extraction results, which result in low robustness and unsatisfactory accuracy. In this paper, we propose a 6D pose estimation method based on semantic-level line matching. The proposed method uses a line detection network to replace the low-level feature extraction methods and fetch semantic-level line features. After filtered by a segmentation network, the features are utilized to generate object-level line descriptors for representing metal parts. The 2D-3D correspondences are achieved by matching descriptors in a sparse template set. Finally, 6D pose estimation of metal parts is completed by solving the PnP problem. Experimental results show that the proposed method achieves higher accuracy compared with existing methods on the Mono-6D dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, G., Wang, K., Lian, S., Zhao, K.: Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: A review. Artif. Intell. Rev. 54(3), 1677–1734 (2021). https://doi.org/10.1007/s10462-020-09888-5

    Article  MATH  Google Scholar 

  2. Zhang, H., Cao, Q.: Detect in RGB, optimize in edge: Accurate 6D pose estimation for texture-less industrial parts. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 3486–3492. IEEE (2019). https://doi.org/10.1109/ICRA.2019.8794330

  3. Zhang, X., Jiang, Z., Zhang, H.: Real-time 6d pose estimation from a single RGB image. Image Vis. Comput. 89, 1–11 (2019). https://doi.org/10.1016/j.imavis.2019.06.013

    Article  MATH  Google Scholar 

  4. Chan, J., Addison Lee, J., Kemao, Q.: BORDER: an oriented rectangles approach to texture-less object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2855–2863 (2016). https://doi.org/10.1109/CVPR.2016.312

  5. Tombari, F., Franchi, A., Di Stefano, L.: BOLD features to detect texture-less objects. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1265–1272. IEEE, Sydney, Australia (2013). https://doi.org/10.1109/ICCV.2013.160

  6. Liu, M.Y., Tuzel, O., Veeraraghavan, A., Taguchi, Y., Marks, T.K., Chellappa, R.: Fast object localization and pose estimation in heavy clutter for robotic bin picking. Int. J. Robot. Res. 31(8), 951–973 (2012). https://doi.org/10.1177/0278364911436018

    Article  Google Scholar 

  7. Imperoli, M., Pretto, A.: D\(^{2}\)CO: fast and robust registration of 3D textureless objects using the directional chamfer distance. In: Nalpantidis, L., Krüger, V., Eklundh, J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 316–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20904-3_29

    Chapter  Google Scholar 

  8. Wang, Y., Wang, X., Chen, Y.: Multi-surface hydraulic valve block technique hole plug inspection from monocular image. Meas. Sci. Technol. 32(11), 115016 (2021). https://doi.org/10.1088/1361-6501/ac1460

    Article  MATH  Google Scholar 

  9. He, Z., Wuxi, F., Zhao, X., Zhang, S., Tan, J.: 6D pose measurement of metal parts based on virtual geometric feature point matching. Meas. Sci. Technol. 32(12), 125210 (2021). https://doi.org/10.1088/1361-6501/ac2a85

    Article  Google Scholar 

  10. He, Z., Jiang, Z., Zhao, X., Zhang, S., Wu, C.: Sparse template-based 6-d pose estimation of metal parts using a monocular camera. IEEE Trans. Industr. Electron. 67(1), 390–401 (2019). https://doi.org/10.1109/TIE.2019.2897539

    Article  MATH  Google Scholar 

  11. Yang, X., Li, K., Fan, X., Zhang, H., Cao, H.: A multi-stage 6D object pose estimation method of texture-less objects based on sparse line features. In: 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 0221–0225 (2022). https://doi.org/10.1109/IEEM55944.2022.9989794

  12. Zhou, Y., Qi, H., Ma, Y.: End-to-end wireframe parsing. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 962–971 (2019). https://doi.org/10.1109/ICCV.2019.00105

  13. Von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2008). https://doi.org/10.1109/TPAMI.2008.300

    Article  MATH  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  MATH  Google Scholar 

  15. Ulrich, M., Wiedemann, C., Steger, C.: Combining scale-space and similarity-based aspect graphs for fast 3d object recognition. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1902–1914 (2012). https://doi.org/10.1109/TPAMI.2011.266

    Article  MATH  Google Scholar 

  16. Konishi, Y., Hanzawa, Y., Kawade, M., Hashimoto, M.: Fast 6D pose estimation from a monocular image using hierarchical pose trees. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 398–413. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_24

    Chapter  Google Scholar 

  17. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze’an Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Wu, Z., Pu, B., Tang, J., Wang, X. (2023). 6D Pose Estimation Method of Metal Parts for Robotic Grasping Based on Semantic-Level Line Matching. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6498-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6497-0

  • Online ISBN: 978-981-99-6498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics