Abstract
The current research on exoskeleton torque control is relatively extensive, but the performance is suboptimal. Exoskeletons driven by series elastic actuator (SEA) can achieve high force control accuracy through simple position control. However, motor placement at the distal end increases the mass of the body terminal device, which not only increases the moment of inertia of the lower limb but also interferes with the normal movement of the patient, limiting their applicability in assisting the wearer. In this study, to prevent foot drop, we designed a lightweight, unilateral ankle exoskeleton that provides assistance for dorsiflexion via a single motor. By placing the motor and other heavier electronic components at the waist, the inertial load on the human leg is reduced achieving better assistance performance. Torque control assistance for the ankle joint is implemented using modified cascade PI control. When a person walks at a speed of 0.4 m/s, the desired maximum torque is set to 1.5 Nm, and the actual maximum torque is 1.5±0.187 Nm, which is close to the expected value. This demonstrates that the exoskeleton exhibits satisfactory force-tracking performance and can precisely assist individuals with foot drop in their daily walking activities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Winter, D.A.: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. University of Waterloo Press, Waterloo (1991)
Kluding, P.M., Dunning, K., O’Dell, M.W., et al.: Foot drop stimulation versus ankle foot orthosis after stroke: 30-week outcomes. Stroke 44(6), 1660–1669 (2013)
Stein, R.B., et al.: Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil. Neural Repair 24(2), 152–167 (2010)
Wiszomirska, I., Błażkiewicz, M., Kaczmarczyk, K.: Effect of drop foot on spatiotemporal, kinematic, and kinetic parameters during gait. Appl. Bionics Biomech. 2017(1), 1–6 (2017)
Alnajjar, F., Zaier, R., et al.: Trends and technologies in rehabilitation of foot drop: a systematic review. Expert Rev. Med. Devices 18(1), 31–46 (2021)
Miller, L., McFadyen, A., Lord, A.C., et al.: Functional electrical stimulation for foot drop in multiple sclerosis: a systematic review and meta-analysis of the effect on gait speed. Arch. Phys. Med. Rehabil. 98(7), 1435–1452 (2017)
Corcoran, P.J.: Effects of plastic and metal leg braces on speed and energy cost of hemiparetic ambulation. Arch. Phys. Med. Rehabil. 51, 69–77 (1970)
Baud, R., et al.: Review of control strategiesfor lower-limb exoskeletons to assist gait. J. Neuroeng. Rehabil. 18(1), 1–34 (2021)
Ferris, D.P., Czerniecki, J.M., Hannaford, B.: An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21(2), 189–197 (2005)
Shorter, K.A., Kogler, G.F., Loth, E., et al.: A portable powered ankle-foot orthosis for rehabilitation. J. Rehabil. Res. Dev. 48(4), 1–34 (2011)
Font-Llagunes, J.M., Lugrís, U., Clos, D., et al.: Design, control, and pilot study of a lightweight and modular robotic exoskeleton for walking assistance after spinal cord injury. J. Mech. Robot. 12(3), 031008 (2020)
Ma, L., Leng, Y., Jiang, W., et al.: Design an underactuated soft exoskeleton to sequentially provide knee extension and ankle plantarflexion assistance. IEEE Robot. Autom. Lett. 7(1), 271–278 (2021)
Gasparri, G.M., et al.: Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4673–4678 (2018)
Gasparri, G.M., Luque, J., Lerner, Z.F.: Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 27(4), 751–759 (2019)
Bishe, S.S.P.A., Nguyen, T., Fang, Y., Lerner, Z.F.: Adaptive ankle exoskeleton control: validation across diverse walking conditions. IEEE Trans. Med. Robot. Bionics 3(3), 801–812 (2021)
Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 399–406 (1995)
Kong, K., Bae, J., Tomizuka, M.: A compact rotary series elastic actuator for human assistive systems. IEEE/ASME Trans. Mechatron. 17(2), 288–297 (2011)
Guo, Y., Song, B., et al.: A calibration method of non-contact R-test for error measurement of industrial robots. Measurement 173, 108365 (2021)
Kim, S., Bae, J.: Force-mode control of rotary series elastic actuators in a lower extremity exoskeleton using model-inverse time delay control. IEEE/ASME Trans. Mechatron. 22(3), 1392–1400 (2017)
Hwang, S., et al.: Development of an active ankle foot orthosis for the prevention of foot drop and toe drag. In: 2006 International Conference on Biomedical and Pharmaceutical Engineering, pp. 418–423 (2006)
Ward, J., et al.: Stroke survivor gait adaptation and performance after training on a powered ankle foot orthosis. In: 2010 IEEE International Conference on Robotics and Automation, pp. 211–216 (2010)
Qian, Y., Han, S., Wang, Y., Fu, C.: Toward improving actuation transparency and safety of a hip exoskeleton with a novel nonlinear series elastic actuator. IEEE/ASME Trans. Mechatron. 28(1), 417–428 (2022)
Qian, Y., Han, S., et al.: Design, modeling, and control of a reconfigurable rotary series elastic actuator with nonlinear stiffness for assistive robots. Mechatronics 86, 102872 (2022)
Acknowledgement
This work was supported in part by the National Natural Science Foundation of China [Grant U1913205, 52175272], in part by the Science, Technology, and Innovation Commission of Shenzhen Municipality [Grant: ZDSYS20200811143601004, JCYJ20220530114809021], and in part by the Stable Support Plan Program of Shenzhen Natural Science Fund under Grant 20200925174640002.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Du, H. et al. (2023). A Lightweight Ankle Exoskeleton Driven by Series Elastic Actuator. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_13
Download citation
DOI: https://doi.org/10.1007/978-981-99-6498-7_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6497-0
Online ISBN: 978-981-99-6498-7
eBook Packages: Computer ScienceComputer Science (R0)