Skip to main content

Robust Tube-Based Model Predictive Control for Marine Ship-Mounted Cranes

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14273))

Included in the following conference series:

  • 516 Accesses

Abstract

Marine ship-mounted cranes are widely used in maritime transportation. For security concern, the payload swing needs to be limited within safe range. However, due to the underactuated nature of the system, the swing angle is hard to be controlled. Worse still, the control problem becomes more challenging when considering the effect of ship-induced disturbances caused by sea waves on the system. Besides, to avoid actuator saturation, the constraints of control input also need to be considered. To this end, in this paper, a robust tube-based model predictive control (TMPC) method, which successfully guarantees the constraints of both input and swing angle, is proposed to achieve satisfactory control performance even under the persistent ship roll perturbation. That is, for the marine ship-mounted crane, a discrete model is first obtained by some elaborate transformation, based on which a tube-based model predictive controller is constructed. To solve the constraint problem of payload swing, which is tough for traditional MPC, some delicate analysis is presented. Specifically, through the coupling relationship between swing angle and trolley acceleration, the swing angle constraint is successfully converted to input constraint. At last, simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

This work is supported by the National Natural Science Foundation of China under Grant 62203235, 61873132, the Natural Science Foundation of Tianjin under Grant 21JCQNJC00090, the Key Projects of the Joint Fund of the National Natural Science Foundation of China under Grant U22A2050, and the Joint Fund of Guangdong Basic and Applied Basic Research Fund under Grant 2022A1515110046.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ship’s roll motion \(\alpha (t)\) is supposed to be measurable, while its interference with the ship-mounted crane is unknown.

  2. 2.

    The detailed proof is in [1].

  3. 3.

    For clarity, \(x(k+i)\) denotes the prediction value of x at time \(k+i\) based on time k.

References

  1. Mayne, D.Q., Seron, M.M., Raković, S.V.: Robust model predictive control of constrained linear systems with bounded disturbances. Automatica 41(2), 219–224 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fang, Y., Wang, P., Sun, N., Zhang, Y.: Dynamics analysis and nonlinear control of an offshore boom crane. IEEE Trans. Industr. Electron. 61(1), 414–427 (2014)

    Article  Google Scholar 

  3. Ilya Kolmanovsky, E.G.G.: Theory and computation of disturbance invariant sets for discrete-time linear systems. Math. Probl. Eng. 4, 317–367 (1997)

    Article  MATH  Google Scholar 

  4. Jolevski, D., Bego, O.: Model predictive control of gantry/bridge crane with anti-sway algorithm. J. Mech. Sci. Technol. 29(2), 827–834 (2015)

    Article  Google Scholar 

  5. Küchler, S., Mahl, T., Neupert, J., Schneider, K., Sawodny, O.: Active control for an offshore crane using prediction of the vessel’s motion. IEEE/ASME Trans. Mechatron. 16(2), 297–309 (2011)

    Article  Google Scholar 

  6. Lu, B., Fang, Y., Lin, J., Hao, Y., Cao, H.: Nonlinear antiswing control for offshore boom cranes subject to ship roll and heave disturbances. Autom. Constr. 131, 103843 (2021)

    Article  Google Scholar 

  7. Lu, B., Fang, Y., Sun, N., Wang, X.: Antiswing control of offshore boom cranes with ship roll disturbances. IEEE Trans. Control Syst. Technol. 26(2), 740–747 (2018)

    Article  Google Scholar 

  8. Ngo, Q.H., Hong, K.S.: Sliding-mode antisway control of an offshore container crane. IEEE/ASME Trans. Mechatron. 17(2), 201–209 (2012)

    Article  Google Scholar 

  9. Ramli, L., Mohamed, Z., Efe, M., Lazim, I.M., Jaafar, H.: Efficient swing control of an overhead crane with simultaneous payload hoisting and external disturbances. Mech. Syst. Signal Process. 135, 106326 (2020)

    Article  Google Scholar 

  10. Rams, H., Schöberl, M., Schlacher, K.: Optimal motion planning and energy-based control of a single mast stacker crane. IEEE Trans. Control Syst. Technol. 26(4), 1449–1457 (2018)

    Article  Google Scholar 

  11. Richter, M., Arnold, E., Schneider, K., Eberharter, J.K., Sawodny, O.: Model predictive trajectory planning with fallback-strategy for an active heave compensation system. In: 2014 American Control Conference, pp. 1919–1924 (2014)

    Google Scholar 

  12. Yang, T., Sun, N., Chen, H., Fang, Y.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Transactions on Neural Networks and Learning Systems 31(3), 901–914 (2020)

    Article  MathSciNet  Google Scholar 

  13. Zhang, A., Lai, X., Wu, M., She, J.: Nonlinear stabilizing control for a class of underactuated mechanical systems with multi degree of freedoms. Nonlinear Dyn. 89(3), 2241–2253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, M., et al.: Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane systems. IEEE/CAA J. Automatica Sin. 5(3), 683–690 (2018)

    Article  MathSciNet  Google Scholar 

  15. Zhou, W., Xiaohua, X.: Optimal motion planning for overhead cranes. IET Control Theor. Appl. 8, 1833–1842 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, J., Fang, Y., Lu, B. (2023). Robust Tube-Based Model Predictive Control for Marine Ship-Mounted Cranes. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6498-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6497-0

  • Online ISBN: 978-981-99-6498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics