Skip to main content

Spontaneous Emergence of Multitasking in Minimal Robotic Systems

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Abstract

This study investigates the behavior of a system of identical robots modeled as self-propelled particles using the Vicsek model. The focus is on understanding the emergence of a chimera state, which represents the spontaneous emergence of multitasking capabilities in the robot swarm. The study considers scenarios with limited communication in a minimal system of 3 identical robots. Numerical simulations and stability analysis are conducted to analyze the system’s characteristics and motion patterns. The research aims to provide insights into the underlying mechanisms and develop a comprehensive framework for controlling and understanding the emergence of the chimera state in robot swarm systems. Additionally, the study examines the influence of coupling strength and phase lag on the occurrence of chimera states through direct numerical simulations and theoretical analysis. The results reveal the relationship between system structure and the manifestation of chimera states, providing valuable insights for further research in this field.

This work was supported by China Postdoctoral Science Foundation (Grant No. 2022M712927), Zhejiang Lab Open Research Project (No. K2022NB0AB01), and Key Research Project of Zhejiang Lab (No. G2021NB0AL03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorigo, M., Theraulaz, G., Trianni, V.: Reflections on the future of swarm robotics. Sci. Robot. 5(49), eabe4385 (2020)

    Google Scholar 

  2. Nedjah, N., Junior, L.S.: Review of methodologies and tasks in swarm robotics towards standardization. Swarm Evol. Comput. 50, 100565 (2019)

    Article  Google Scholar 

  3. Wen, J., He, L., Zhu, F.: Swarm robotics control and communications: imminent challenges for next generation smart logistics. IEEE Commun. Mag. 56(7), 102–107 (2018)

    Article  Google Scholar 

  4. Li, Z., Barenji, A.V., Jiang, J., Zhong, R.Y., Xu, G.: A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand. J. Intell. Manuf. 31(2), 469–480 (2020)

    Article  Google Scholar 

  5. Kouzehgar, M., Meghjani, M., Bouffanais, R.: Multi-agent reinforcement learning for dynamic ocean monitoring by a swarm of buoys. In: Global Oceans,: Singapore-US Gulf Coast. IEEE 2020, 1–8 (2020)

    Google Scholar 

  6. Agarwala, N.: Monitoring the ocean environment using robotic systems: advancements, trends, and challenges. Mar. Technol. Soc. J. 54(5), 42–60 (2020)

    Article  Google Scholar 

  7. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7, 36 (2020)

    Article  Google Scholar 

  8. Kim, K., Kim, H., Myung, H.: Bio-inspired robot swarm control algorithm for dynamic environment monitoring. Adv. Robot. Res. 2(1), 1 (2018)

    Google Scholar 

  9. Ji, K., Zhang, Q., Yuan, Z., Cheng, H., Yu, D.: A virtual force interaction scheme for multi-robot environment monitoring. Robot. Auton. Syst. 149, 103967 (2022)

    Article  Google Scholar 

  10. Zheng, J., Yang, T., Liu, H., Su, T., Wan, L.: Accurate detection and localization of unmanned aerial vehicle swarms-enabled mobile edge computing system. IEEE Trans. Industr. Inf. 17(7), 5059–5067 (2020)

    Article  Google Scholar 

  11. Zhou, W., Liu, Z., Li, J., Xu, X., Shen, L.: Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning. Neurocomputing 466, 285–297 (2021)

    Article  Google Scholar 

  12. Tahir, A., Böling, J., Haghbayan, M.-H., Toivonen, H.T., Plosila, J.: Swarms of unmanned aerial vehicles-a survey. J. Ind. Inf. Integr. 16, 100106 (2019)

    Google Scholar 

  13. Zhou, C., et al.: The review unmanned surface vehicle path planning: based on multi-modality constraint. Ocean Eng. 200, 107043 (2020)

    Article  Google Scholar 

  14. Sauter, J.A., Bixler, K.: Design of unmanned swarm tactics for an urban mission," in Unmanned Systems Technology XXI, vol. 11021. SPIE, pp. 124–139 (2019)

    Google Scholar 

  15. Che, G., Liu, L., Yu, Z.: An improved ant colony optimization algorithm based on particle swarm optimization algorithm for path planning of autonomous underwater vehicle. J. Ambient. Intell. Humaniz. Comput. 11(8), 3349–3354 (2020)

    Article  Google Scholar 

  16. Herlambang, T., Rahmalia, D., Yulianto, T.: Particle swarm optimization (pso) and ant colony optimization (aco) for optimizing pid parameters on autonomous underwater vehicle (auv) control system. J. Phys. Conf. Ser. 1211(1). IOP Publishing, 2019, p. 012039

    Google Scholar 

  17. Vedachalam, N., Ramesh, R., Jyothi, V.B.N., Prakash, D., Ramadass, G.: Autonomous underwater vehicles-challenging developments and technological maturity towards strategic swarm robotics systems. Marine Georesources Geotechnol. 37(5), 525–538 (2019)

    Google Scholar 

  18. Berlinger, F., Gauci, M., Nagpal, R.: Implicit coordination for 3d underwater collective behaviors in a fish-inspired robot swarm. Sci. Robot. 6(50), eabd8668 (2021)

    Google Scholar 

  19. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  20. Zhou, X., et al.: Swarm of micro flying robots in the wild. Sci. Robot. 7(66), eabm5954 (2022)

    Google Scholar 

  21. Li, S., et al.: Particle robotics based on statistical mechanics of loosely coupled components. Nature 567(7748), 361–365 (2019)

    Article  Google Scholar 

  22. Wang, G., et al.: Emergent field-driven robot swarm states. Phys. Rev. Lett. 126(10), 108002 (2021)

    Article  Google Scholar 

  23. Kruk, N., Maistrenko, Y., Koeppl, H.: Self-propelled chimeras. Phys. Rev. E 98(3), 032219 (2018)

    Article  Google Scholar 

  24. Kuramoto, Y., Battogtokh, D.: Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, arXiv preprint cond-mat/0210694 (2002)

    Google Scholar 

  25. Abrams, D.M., Strogatz, S.H.: Chimera states for coupled oscillators. Phys. Rev. Lett. 93(17), 174102 (2004)

    Article  Google Scholar 

  26. Parastesh, F., et al.: Chimeras. Phys. Rep. 898, 1–114 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, J., et al.: Spontaneous emergence of multitasking robotic swarms. In: 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 184–188 (2022)

    Google Scholar 

  28. Chaté, H., Ginelli, F., Grégoire, G., Peruani, F., Raynaud, F.: Modeling collective motion: variations on the vicsek model. Eur. Phys. J. B 64(3), 451–456 (2008)

    Article  Google Scholar 

  29. Ginelli, F.: The physics of the vicsek model. Eur. Phys. J. Special Top. 225(11), 2099–2117 (2016)

    Article  Google Scholar 

  30. Gong, C.C., Zheng, C., Toenjes, R., Pikovsky, A.: Repulsively coupled kuramoto-sakaguchi phase oscillators ensemble subject to common noise. Chaos Interdisciplinary J. Nonlinear Sci. 29(3), 033127 (2019)

    Google Scholar 

  31. Mihara, A., Medrano-T, R.O.: Stability in the kuramoto-sakaguchi model for finite networks of identical oscillators. Nonlinear Dyn. 98(1), 539–550 (2019)

    Article  MATH  Google Scholar 

  32. Ha, S.-Y., Xiao, Q.: Nonlinear instability of the incoherent state for the kuramoto-sakaguchi-fokker-plank equation. J. Stat. Phys. 160, 477–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abhyankar, S., et al.: Petsc/ts: A modern scalable ode/dae solver library. arXiv preprint arXiv:1806.01437 (2018)

  34. Zhang, H., Constantinescu, E.M., Smith, B.F.: Petsc tsadjoint: a discrete adjoint ode solver for first-order and second-order sensitivity analysis. arXiv preprint arXiv:1912.07696 (2019)

  35. Zhang, Y., Motter, A.E.: Mechanism for strong chimeras. Phys. Rev. Lett. 126(9), 094101 (2021)

    Article  MathSciNet  Google Scholar 

  36. Ashwin, P., Burylko, O.: Weak chimeras in minimal networks of coupled phase oscillators. Chaos Interdisciplinary J. Nonlinear Sci. 25(1), 013106 (2015)

    Google Scholar 

  37. Burylko, O., Martens, E.A., Bick, C.: Symmetry breaking yields chimeras in two small populations of kuramoto-type oscillators. Chaos Interdisciplinary J. Nonlinear Sci. 32(9), 093109 (2022)

    Google Scholar 

  38. Kotwal, T., Jiang, X., Abrams, D.M.: Connecting the kuramoto model and the chimera state. Phys. Rev. Lett. 119(26), 264101 (2017)

    Article  Google Scholar 

  39. Kohar, V., Ji, P., Choudhary, A., Sinha, S., Kurths, J.: Synchronization in time-varying networks. Phys. Rev. E 90(2), 022812 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Li, H., Du, H., Liang, Y., Song, W., Li, T. (2023). Spontaneous Emergence of Multitasking in Minimal Robotic Systems. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14273. Springer, Singapore. https://doi.org/10.1007/978-981-99-6498-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6498-7_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6497-0

  • Online ISBN: 978-981-99-6498-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics