Skip to main content

To Improve the Energy Efficiency: Modeling and Control for Quadrotor with Tiltable Wing

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14274))

Included in the following conference series:

  • 413 Accesses

Abstract

In this article, a new configuration of vertical take-off and landing (VTOL) UAV is proposed aiming at improving the energy utilize efficiency. In this configuration, a tiltable wing is installed at the center of the H-configuration quadrotor, and the orientation of the wing surface and the attitude of the quadrotor body are adjusted according to the orientation and magnitude of the target velocity. A state feedback + model feedforward flight controller capable of controlling the quadrotor with tiltable wing (QTW) throughout the entire flight envelope is proposed, without the need to switch between several mode. The performance of the proposed configuration and controller is demonstrated through a set of numerical simulations on the model of the QTW.

This work was supported by the National Natural Science Foundation of China (Grant No. 62273122).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argyle, M.E., Beard, R.W., Morris, S.: The vertical bat tail-sitter: dynamic model and control architecture. In: 2013 American Control Conference, pp. 806–811. IEEE (2013)

    Google Scholar 

  2. Bauersfeld, L., Scaramuzza, D.: Range, endurance, and optimal speed estimates for multicopters. IEEE Robot. Autom. Lett. 7(2), 2953–2960 (2022)

    Article  Google Scholar 

  3. Bauersfeld, L., Spannagl, L., Ducard, G.J.J., Onder, C.H.: MPC flight control for a tilt-rotor VTOL aircraft. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2395–2409 (2021). https://doi.org/10.1109/TAES.2021.3061819

    Article  Google Scholar 

  4. Chen, Z., Jia, H.: Design of flight control system for a novel tilt-rotor UAV. Complexity 2020, 1–14 (2020)

    Article  Google Scholar 

  5. Dalwadi, N., Deb, D., Ozana, S.: Dual observer based adaptive controller for hybrid drones. Drones 7(1) (2023). https://doi.org/10.3390/drones7010048

  6. Dalwadi, N., Deb, D., Rath, J.J.: Biplane trajectory tracking using hybrid controller based on backstepping and integral terminal sliding mode control. Drones 6(3) (2022). https://doi.org/10.3390/drones6030058

  7. Drela, M.: XFOIL: an analysis and design system for low reynolds number airfoils. In: Mueller, T.J. (ed.) Low Reynolds Number Aerodynamics, pp. 1–12. Springer, Cham (1989). https://doi.org/10.1007/978-3-642-84010-4_1

    Chapter  Google Scholar 

  8. Flores, G.R., Escareño, J., Lozano, R., Salazar, S.: Quad-tilting rotor convertible MAV: modeling and real-time hover flight control. J. Intell. Robot. Syst. 65(1–4), 457–471 (2012)

    Article  Google Scholar 

  9. kalpa Gunarathna, J., Munasinghe, R.: Development of a quad-rotor fixed-wing hybrid unmanned aerial vehicle. In: 2018 Moratuwa Engineering Research Conference (MERCon), pp. 72–77. IEEE (2018)

    Google Scholar 

  10. Jones, R., Cleaver, D., Gursul, I.: Aerodynamics of biplane and tandem wings at low reynolds numbers. Exp. Fluids 56, 1–25 (2015)

    Article  Google Scholar 

  11. Liu, B., Li, J., Yang, Y., Zhou, Z.: Controller design for quad-rotor UAV based on variable aggregation model predictive control. Flight Control Detect. 4(3), 1–7 (2021)

    Google Scholar 

  12. Pfeifle, O., Fichter, W.: Minimum power control allocation for incremental control of over-actuated transition aircraft. J. Guid. Control. Dyn. 46(2), 286–300 (2023)

    Article  Google Scholar 

  13. Smeur, E.J., Bronz, M., de Croon, G.C.: Incremental control and guidance of hybrid aircraft applied to a tailsitter unmanned air vehicle. J. Guid. Control. Dyn. 43(2), 274–287 (2020)

    Article  Google Scholar 

  14. Stevens, B.L., Lewis, F.L., Johnson, E.N.: Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Wiley, Hoboken (2015)

    Book  Google Scholar 

  15. Sun, J., Li, B., Wen, C.Y., Chen, C.K.: Model-aided wind estimation method for a tail-sitter aircraft. IEEE Trans. Aerosp. Electron. Syst. 56(2), 1262–1278 (2020). https://doi.org/10.1109/TAES.2019.2929379

    Article  Google Scholar 

  16. Swarnkar, S., Parwana, H., Kothari, M., Abhishek, A.: Biplane-quadrotor tail-sitter UAV: flight dynamics and control. J. Guid. Control. Dyn. 41(5), 1049–1067 (2018)

    Article  Google Scholar 

  17. Xi, L., Zhu, Q., Zhang, D.: Sliding mode control design based on fuzzy reaching law for yaw angle of a tail-sitter UAV. In: 2016 22nd International Conference on Automation and Computing (ICAC), pp. 238–243 (2016). https://doi.org/10.1109/IConAC.2016.7604925

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, F., Li, Z., Li, H., Li, Y., Xu, Q., Xiu, B. (2023). To Improve the Energy Efficiency: Modeling and Control for Quadrotor with Tiltable Wing. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics