Skip to main content

Comparative Carbon Footprint and Environmental Impacts of LiFePO4 - LiCoxNiyMn(1-x-y)O2 Hybrid Batteries Manufacturing

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Abstract

Although the electrification of the transportation sector is crucial to mitigating climate change and the energy crisis, understanding the carbon footprint and environmental impact of the manufacturing process for the power batteries used in electric vehicles is limited. The carbon footprint and environmental impacts of the manufacturing process of LiCoxNiyMn(1-x-y)O2 (NCM), LiFePO4 (LFP), and LiFePO4 - LiCoxNiyMn(1-x-y)O2 (LFP-NCM) batteries are quantified and compared based on life cycle assessment method. The results show that NCM batteries have the highest carbon footprint (96.2 kg CO2-eq/kWh) among the batteries studied. The carbon footprint of the cathode material and assembly process accounts for more than 60.0% of the NCM manufacturing process. LFP-NCM batteries can reduce the carbon footprint by 3.4% compared to NCM while improving economic efficiency and safety. The mineral resource scarcity of NCM is 12.6% and 75.5% higher than that of LFP-NCM and LFP batteries, respectively. The LFP batteries significantly impact freshwater eutrophication and human carcinogenic toxicity. The environmental impacts of the manufacturing processes of NCM and LFP batteries can be better balanced by LFP-NCM batteries. This study provides a reference for optimizing battery manufacturing processes and promoting low-carbon and sustainable development in the transportation industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, C., Zhao, X., Sacchi, R., You, F.: Trade-off between critical metal requirement and transportation decarbonization in automotive electrification. Nat. Commun. 14(1) (2023). https://doi.org/10.1038/s41467-023-37373-4

  2. Chen, Q., et al.: Investigating carbon foot-print and carbon reduction potential using a cradle-to-cradle LCA approach on lithium-ion batteries for electric vehicles in China. J. Clean. Prod. 369, 133342 (2022). https://doi.org/10.1016/j.jclepro.2022.133342

    Article  Google Scholar 

  3. Lai, X., et al.: Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: a lifespan perspective. eTransportation (2022). https://doi.org/10.1016/j.etran.2022.100169

  4. Lai, X., et al.: Turning waste into wealth: a systematic review on echelon utilization and material recycling of retired lithium-ion batteries. Energy Storage Materials 40, 96–123 (2021). https://doi.org/10.1016/j.ensm.2021.05.010

    Article  Google Scholar 

  5. Lin, B., Wu, W.: The impact of electric vehicle penetration: a recursive dynamic CGE analysis of China. Energy Econ. 94, 105086 (2021). https://doi.org/10.1016/j.eneco.2020.105086

    Article  Google Scholar 

  6. Chen, Q., et al.: Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired NCM batteries from electric vehicles in China. Available at SSRN 4303305. https://doi.org/10.1016/j.seppur.2023.123277

  7. Yuan, C., et al.: Water-based manufacturing of lithium-ion battery for life cycle impact mitigation. CIRP Ann. Manuf. Technol. 70(1), 25–28 (2021). https://doi.org/10.1016/j.cirp.2021.04.038

    Article  Google Scholar 

  8. Feng, T., Guo, W., Li, Q., Meng, Z., Liang, W.: Life cycle assessment of lithium nickel cobalt manganese oxide batteries and lithium iron phosphate batteries for electric vehicles in China. J. Energy Storage 52, 104767 (2022). https://doi.org/10.1016/j.est.2022.104767

    Article  Google Scholar 

  9. Lopez, S., Akizu-Gardoki, O., Lizundia, E.: Comparative life cycle assessment of high-performance lithium-sulfur battery cathodes. J. Clean. Prod. 282, 124528 (2021). https://doi.org/10.1016/j.jclepro.2020.124528

    Article  Google Scholar 

  10. Wang, F., Deng, Y., Yuan, C.: Life cycle assessment of lithium oxygen battery for electric vehicles. J. Clean. Prod. 264, 121339 (2020). https://doi.org/10.1016/j.jclepro.2020.121339

    Article  Google Scholar 

  11. Hammond, G.P., Hazeldine, T.: Indicative energy technology assessment of advanced rechargeable batteries. Appl. Energy 138, 559–571 (2015). https://doi.org/10.1016/j.apenergy.2014.10.037

    Article  Google Scholar 

  12. Yang, J., Gu, F., Guo, J.F.: Environmental feasibility of secondary use of electric vehicle lithium-ion batteries in communication base stations. Resour. Conserv. Recycl. 156, 104713 (2020). https://doi.org/10.1016/j.resconrec.2020.104713

    Article  Google Scholar 

  13. Liang, Y., et al.: Life cycle assessment of lithium-ion batteries for greenhouse gas emissions. Resour. Conserv. Recycl. 117, 285–293 (2017). https://doi.org/10.1016/j.resconrec.2016.08.028

    Article  Google Scholar 

  14. Wang, G., Jin, B., Wang, M., Sun, Y., Zheng, Y., Su, T.: State of charge estimation for “LiFePO4 - LiCoxNiyMn1-x-yO2” hybrid battery pack. J. Energy Storage 65, 107345 (2023). https://doi.org/10.1016/j.est.2023.107345

    Article  Google Scholar 

  15. Lai, X., et al.: Investigating greenhouse gas emissions and environmental impacts from the production of lithium-ion batteries in China. J. Clean. Prod. 372, 133756 (2022). https://doi.org/10.1016/j.jclepro.2022.133756

    Article  Google Scholar 

  16. Li, P., Xia, X., Guo, J.: A review of the life cycle carbon footprint of electric vehicle batteries. Sep. Purif. Technol. 296, 121389 (2022). https://doi.org/10.1016/j.seppur.2022.121389

    Article  Google Scholar 

  17. Kallitsis, E., Korre, A., Kelsall, G.H.: Life cycle assessment of recycling options for automotive li-ion battery packs. J. Clean. Prod. 371, 133636 (2022). https://doi.org/10.1016/j.jclepro.2022.133636

    Article  Google Scholar 

  18. Wu, H., Hu, Y., Yu, Y., Huang, K., Wang, L.: The environmental footprint of electric vehicle battery packs during the production and use phases with different functional units. Int. J. Life Cycle Assess. 26(1), 97–113 (2020). https://doi.org/10.1007/s11367-020-01836-3

    Article  Google Scholar 

  19. Lai, X., Chen, Q., Gu, H., Han, X., Zheng, Y.: Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: framework, methods, and progress. J. Mech. Eng. 58(22), 3–18 (2022). https://doi.org/10.3901/JME.2022.22.003

    Article  Google Scholar 

  20. Porzio, J., Scown, C.D.: Life-Cycle assessment considerations for batteries and battery materials. Adv. Energy Mater., 2100771 (2021). https://doi.org/10.1002/aenm.202100771

  21. Yu, A., Wei, Y., Chen, W., Peng, N., Peng, L.: Life cycle environmental impacts and carbon emissions: a case study of electric and gasoline vehicles in China. Transp. Res. 65(DEC.), 409–420 (2018). https://doi.org/10.1016/j.trd.2018.09.009

  22. Chen, Q., et al.: Investigating the environmental impacts of different direct material recycling and battery remanufacturing technologies on two types of retired lithium-ion batteries from electric vehicles in China. Sep. Purif. Technol. 308, 122966 (2023). https://doi.org/10.1016/j.seppur.2022.122966

    Article  Google Scholar 

  23. Lai, X., Zhou, L., Zhu, Z., Zheng, Y., Sun, T., Shen, K.: Experimental investigation on the characteristics of coulombic efficiency of lithium-ion batteries considering different influencing factors. Energy 274, 127408 (2023). https://doi.org/10.1016/j.energy.2023.127408

    Article  Google Scholar 

  24. Lai, X., Wang, S., Wang, H., Zheng, Y., Feng, X.: Investigation of thermal runaway propagation characteristics of lithium-ion battery modules under different trigger modes. Int. J. Heat Mass Transf. 171(2021), 121080 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121080

    Article  Google Scholar 

  25. Pre-sustainability. SimaPro | LCA software for informed change-makers. https://simapro.com/. Accessed 12 May 2023

  26. Degen, F., Schuette, M.: Life cycle assessment of the energy consumption and GHG emissions of state-of-the-art automotive battery cell production. J. Cleaner Prod. (Jan.1), 330 (2022). https://doi.org/10.1016/j.jclepro.2021.129798

  27. Baars, J., Domenech, T., Bleischwitz, R., Melin, H., Heidrich, O.: Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4 (2021). https://doi.org/10.1038/s41893-020-00607-0

  28. Weimer, L., Braun, T., Hemdt, A.V.: Design of a systematic value chain for lithium-ion batteries from the raw material perspective. Resour. Policy 64 (2019). https://doi.org/10.1016/j.resourpol.2019.101473

Download references

Acknowledgment

This research is supported National Natural Science Foundation of China (NSFC) under Grant numbers 51977131, 52277222, and 52277223.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q. et al. (2023). Comparative Carbon Footprint and Environmental Impacts of LiFePO4 - LiCoxNiyMn(1-x-y)O2 Hybrid Batteries Manufacturing. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics