Skip to main content

Research Status and Application Prospects of Magnetically Driven Micro- and Nanorobots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14274))

Included in the following conference series:

  • 596 Accesses

Abstract

Micro- and nanorobots can effectively convert different energies into kinetic energy, and have been widely concerned by people for a long time. In recent years, magnetically driven micro- and nanorobots have become a research hotspot due to their excellent controllability and motion performance in complex environments. Micro- and nanorobots have the characteristics of wireless magnetically drive and control, and can adapt well to small and enclosed environments in vitro and in vivo. They have shown great potential in various fields such as biomedical, electronic, and environmental applications. This article first reviews the research progress of magnetically driven micro- and nanorobots both domestically and internationally in recent years, summarizes the exterior structure design, manufacturing methods, magnetic drive system selection and motion control methods of magnetically driven micro- and nanorobots, and then introduces the application research of magnetically driven micro- and nanorobots in the biomedical field. Finally, the problems and prospects of magnetically driven micro/nano robots are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sitti, M., Wiersma, D.S.: Pros and cons: magnetic versus optical microrobots. Adv. Mater. 32(20), e1906766 (2020). https://doi.org/10.1002/adma.201906766

    Article  Google Scholar 

  2. Huang, C., Lv, J., Tian, X., Wang, Y., Yu, Y., Liu, J.: Miniaturized swimming soft robot with complex movement actuated and controlled by remote light signals. Sci. Rep. 5(1), 17414 (2015). https://doi.org/10.1038/srep17414

    Article  Google Scholar 

  3. Chen, X.Z., et al.: Small-scale machines driven by external power sources. Adv. Mater. (Deerfield Beach, Fla.) 30(15), e1705061 (2018)

    Article  Google Scholar 

  4. Steager, E.B., Sakar, M.S., Magee, C., Kennedy, M., Cowley, A., Kumar, V.: Automated biomanipulation of single cells using magnetic microrobots. Int. J. Rob. Res. 32(3), 346–359 (2013)

    Article  Google Scholar 

  5. Katuri, J., Ma, X., Stanton, M.M., Sánchez, S.: Designing micro- and nanoswimmers for specific applications. Acc. Chem. Res. 50(1), 2–11 (2017)

    Article  Google Scholar 

  6. Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., Franco-Obregón, A., Nelson, B.J.: Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. (Deerfield Beach Fla.) 24(6), 811–816 (2012)

    Article  Google Scholar 

  7. Shao, G., Ware, H.O.T., Huang, J., Hai, R., Li, L., Sun, C.: 3D printed magnetically-actuating micro-gripper operates in air and water. Addit. Manuf. 38, 101834 (2021)

    Google Scholar 

  8. Tang, J., Yao, C., Gu, Z., Jung, S., Luo, D., Yang, D.: Super-soft and super-elastic DNA robot with magnetically driven navigational locomotion for cell delivery in confined space. Angewandte Chemie (Int. ed. in English.) 59(6), 2490–2495 (2020)

    Article  Google Scholar 

  9. Wang, L., Meng, Z., Chen, Y., Zheng, Y.: Engineering, magnetic, micro/nanorobots for versatile biomedical applications. Adv. Intell. Syst. 3, 2000267 (2021)

    Article  Google Scholar 

  10. Koleoso, M., Feng, X., Xue, Y., Li, Q., Munshi, T., Chen, X.: Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio. 8, 100085 (2020)

    Article  Google Scholar 

  11. Li, J., et al.: Development of a magnetic microrobot for carrying and delivering targeted cells. Sci. Robot. 3, 8829 (2018)

    Article  Google Scholar 

  12. Khalil, I.S.M., Dijkslag, H.C., Abelmann, L., Misra, S.: MagnetoSperm: a microrobot that navigates using weak magnetic fields. Appl. Phys. Lett. 104(22), 223701 (2014)

    Article  Google Scholar 

  13. Won, S., Kim, S., Park, J.E., et al.: On-demand orbital maneuver of multiple soft robots via hierarchical magnetomotility. Nat. Commun. 10, 4751 (2019)

    Article  Google Scholar 

  14. Huang, C., Xu, T., Liu, J., Manamanchaiyaporn, L., Wu, X.: Visual servoing of miniature magnetic film swimming robots for 3-D arbitrary path following. IEEE Robot. Autom. Lett. 4(4), 4185–4191 (2019)

    Article  Google Scholar 

  15. Kim, H., Ali, J., Cheang, U.K., Jeong, J., Kim, J.S., Kim, M.J.: Micro manipulation using magnetic microrobots. J. Bionic Eng. 13(4), 515–524 (2016)

    Article  Google Scholar 

  16. Han, K., et al.: Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. Sci. Adv. 329, e1701108 (2017)

    Article  Google Scholar 

  17. Yang, L., et al.: Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Adv. Funct. Mater. 29, 1905745 (2019)

    Article  Google Scholar 

  18. Hu, H., Yang, X., Song, L., Wei, W., Peng, G., Feng, L.: High position accuracy and 5 degree freedom magnetic driven capsule robot. In: 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, pp. 19–24 (2019)

    Google Scholar 

  19. Kim, Y., Yuk, H., Zhao, R., et al.: Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018)

    Article  Google Scholar 

  20. Yan, X., et al.: Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2(12), eaaq1155 (2017). https://doi.org/10.1126/scirobotics.aaq1155

    Article  Google Scholar 

  21. Go, G., Nguyen, V.D., Jin, Z., et al.: A thermo-electromagnetically actuated microrobot for the targeted transport of therapeutic agents. Int. J. Control Autom. Syst. 16, 1341–1354 (2018)

    Article  Google Scholar 

  22. Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C.R., Rus, D.: An untethered miniature origami robot that self-folds, walks, swims, and degrades. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, pp. 1490–1496 (2015)

    Google Scholar 

  23. Zhang, L., Huang, H., Chen, L., Li, X., Li, Y., Huang, J.: A magnetically controlled micro-robot with multiple side flagella. In: 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Los Angeles, CA, USA, pp. 544–549 (2017)

    Google Scholar 

  24. Du, X., et al.: Reconfiguration, camouflage, and color-shifting for bioinspired adaptive hydrogel-based millirobots. Adv. Funct. Mater. 30, 1909202 (2020)

    Article  Google Scholar 

  25. Huang, H.W., Sakar, M., Petruska, A., et al.: Soft micromachines with programmable motility and morphology. Nat Commun 7, 12263 (2016)

    Article  Google Scholar 

  26. Hu, W., Lum, G., Mastrangeli, M., et al.: Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018)

    Article  Google Scholar 

  27. Hui, X., et al.: Reconfigurable magnetic microrobot swarm: multimode transformation, locomotion, and manipulation. Sci. Robot. 4, eaav8006 (2019)

    Article  Google Scholar 

  28. Xu, T., et al.: Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci. Robot. 4, eaav4494 (2019)

    Article  Google Scholar 

  29. Cui, J., Huang, T.Y., Luo, Z., et al.: Nanomagnetic encoding of shape-morphing micromachines. Nature 575, 164–168 (2019)

    Article  Google Scholar 

  30. Adam, G., Benouhiba, A., Rabenorosoa, K., Clévy, C., Cappelleri, D.J.: 4D printing: enabling technology for microrobotics applications. Adv. Intell. Syst. 3, 2000216 (2021)

    Article  Google Scholar 

  31. Yang, L., Zhang, Y., Wang, Q., Chan, K.-F., Zhang, L.: Automated control of magnetic spore-based microrobot using fluorescence imaging for targeted delivery with cellular resolution. IEEE Trans. Autom. Sci. Eng. 17(1), 490–501 (2020)

    Article  Google Scholar 

  32. Schuerle, S., Pané, S., Pellicer, E., Sort, J., Baró, M.D., Nelson, B.J.: Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation. Small 8, 1498–1502 (2012)

    Article  Google Scholar 

  33. Mushtaq, F., Chen, X.Z., Staufert, S., et al.: On-the-fly catalytic degradation of organic pollutants using magneto-photoresponsive bacteria-templated microcleaners. J. Mater. Chem. A. 7, 24847–24856 (2023)

    Article  Google Scholar 

  34. Zhong, D., Li, W., Qi, Y., He, J., Zhou, M.: Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging-guided enhanced radio-photodynamic synergetic therapy. Adv. Funct. Mater. 30, 1910395 (2020)

    Article  Google Scholar 

  35. McNeil, R.G., et al.: Characteristics of an improved magnetic-implant guidance system. I.E.E.E. Trans. Biomed. Eng. 42(8), 802–808 (1995)

    Google Scholar 

  36. Yesin, K.B., Vollmers, K., Nelson, B.J.: Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot Res. 25(5–6), 527–536 (2006)

    Article  Google Scholar 

  37. Kummer, M.P., Abbott, J.J., Kratochvil, B.E., Borer, R., Sengul, A., Nelson, B.J.: OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Rob. 26(6), 1006–1017 (2010)

    Article  Google Scholar 

  38. Mahoney, A.W., Sarrazin, J.C., Bamberg, E., Abbott, J.J.: Velocity control with gravity compensation for magnetic helical microswimmers. Adv. Robot. 25(8), 1007–1028 (2011)

    Article  Google Scholar 

  39. Mahoney, A.W., Cowan, D.L., Miller, K.M., Abbott, J.J.: Control of untethered magnetically actuated tools using a rotating permanent magnet in any position. In: 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, pp. 3375–3380 (2012)

    Google Scholar 

  40. Zheng, Z., Wang, H., Dong, L., et al.: Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling. Nat. Commun. 12, 411 (2021)

    Article  Google Scholar 

  41. Byun, D., Choi, J., Cha, K., Park, J., Park, S.: Swimming microrobot actuated by two pairs of Helmholtz coils system. Mechatronics 21(1), 357–364 (2011)

    Article  Google Scholar 

  42. Choi, H., Choi, J., Jang, G., et al.: Two-dimensional actuation of a microrobot with a stationary two-pair coil system. Smart Mater. Struct 18(5), 055007 (2009)

    Article  Google Scholar 

  43. Jeon, S.M., Jang, G.H., Choi, J.H., Park, S.H., Park, J.O.: Precise manipulation of a microrobot in the pulsatile flow of human blood vessels using magnetic navigation system. J. Appl. Phys. 109(7), 07B316 (2011)

    Article  Google Scholar 

  44. Qiu, F., Nelson, B.J.: Magnetic helical micro- and nanorobots: toward their biomedical applications. Engineering 1(1), 021–026 (2015)

    Article  Google Scholar 

  45. Miyashita, S., Guitron, S., Yoshida, K., Li, S., Damian, D.D., Rus, D.: Ingestible, controllable, and degradable origami robot for patching stomach wounds. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, pp. 909–916 (2016)

    Google Scholar 

  46. Li, D., Dong, D., Lam, W., Xing, L., Wei, T., Sun, D.: Automated in Vivo navigation of magnetic-driven microrobots using OCT imaging feedback. I.E.E.E. Trans. Biomed. Eng. 67(8), 2349–2358 (2020)

    Google Scholar 

  47. Xin, C., et al.: Conical hollow microhelices with superior swimming capabilities for targeted cargo delivery. Adv Mater. 31(25), e1808226 (2019)

    Article  Google Scholar 

  48. Alapan, Y., Bozuyuk, U., Erkoc, P., Karacakol, A.C., Sitti, M.: Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Sci. Robot. 5(42), eaba5726 (2020). https://doi.org/10.1126/scirobotics.aba5726

    Article  Google Scholar 

Download references

Acknowledgement

This work was Supported by the Fundamental Research Funds for the Provincial Universities of Zhejiang [grant number GK209907299001-011], the National Natural Science Foundation of China [grant number 52005142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqiang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, X., Ren, P., Zheng, J., Zhang, Z. (2023). Research Status and Application Prospects of Magnetically Driven Micro- and Nanorobots. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics