Skip to main content

Inverse Kinematics Solver Based on Evolutionary Algorithm and Gradient Descent for Free-Floating Space Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14274))

Included in the following conference series:

  • 424 Accesses

Abstract

This paper investigates the inverse kinematics (IK) problem of free-floating space robot (FFSR) and proposes an IK solver called IK Solver Based on Evolutionary Algorithm and Gradient Descent for FFSR (EA &GD-Based IK Solver for FFSR). The IK problem for FFSR aims to find a configuration satisfying: the end-effector (EE) reaches a specific pose; the base attitude angle in this configuration is as close as possible to its nominal value. This IK solver includes the initial value module and the gradient descent module. The first module uses evolutionary algorithm to get an initial configuration, where the base attitude angle is set to its nominal value, and EE pose corresponding to this configuration is very close to the goal EE pose. The second module uses the initial configuration as initial value and obtains the gradient by projecting the EE pose error using the pseudo-inverse of the Generalized Jacobian Matrix (GJM). It can further reduce the EE pose error in the first module and obtain a configuration as a solution to the IK problem. As the EE pose corresponding to the initial configuration is very close to goal EE pose, the second module will not bring too much change in the base attitude. Therefore, the base attitude angle of the configuration obtained by the second module is very close to the nominal base attitude angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flores-Abad, A., Ma, O., Pham, K., Ulrich, S.: A review of space robotics technologies for on-orbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  2. Dai, H., Izatt, G., Tedrake, R.: Global inverse kinematics via mixed-integer convex optimization. Int. J. Robot. Res. 38(12–13), 1420–1441 (2019)

    Article  Google Scholar 

  3. Lynch, K.M., Park, F.C.: Modern Robotics. Cambridge University Press, Liberty Plaza (2017)

    Google Scholar 

  4. Qiao, S., Liao, Q., Wei, S., Su, H.J.: Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions. Mech. Mach. Theory 45(2), 193–199 (2010)

    Article  MATH  Google Scholar 

  5. Varedi, S.M., Daniali, H.M., Ganji, D.D.: Kinematics of an offset 3-UPU translational parallel manipulator by the homotopy continuation method. Nonlinear Anal. Real World Appl. 10(3), 1767–1774 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buss, S.R.: Introduction to inverse kinematics with Jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)

    Google Scholar 

  7. Beeson, P., Ames, B.: TRAC-IK: an open-source library for improved solving of generic inverse kinematics. In: 2015 IEEE-RAS 15th International Conference on Humanoid Robots, Seoul, South Korea, pp. 928–935. IEEE (2015)

    Google Scholar 

  8. Starke, S., Hendrich, N., Zhang, J.: A memetic evolutionary algorithm for real-time articulated kinematic motion. In: 2017 IEEE Congress on Evolutionary Computation, Donostia, Spain, pp. 2473–2479. IEEE (2017)

    Google Scholar 

  9. Xu, W., Li, C., Wang, X., Liu, Y., Liang, B., Xu, Y.: Study on non-holonomic cartesian path planning of a free-floating space robotic system. Adv. Robot. 23(1–2), 113–143 (2009)

    Article  Google Scholar 

  10. Vafa, Z., Dubowsky, S.: On the dynamics of manipulators in space using the virtual manipulator approach. In: 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, vol. 4, pp. 579–585. IEEE (1987)

    Google Scholar 

  11. Yoshida, K., Nenchev, D.N.: Space robot impact analysis and satellite-base impulse minimization using reaction null-space. In: 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, vol. 2, pp. 1271–1277. IEEE (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanxia Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Tang, Y., Zhu, Z. (2023). Inverse Kinematics Solver Based on Evolutionary Algorithm and Gradient Descent for Free-Floating Space Robot. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics