Skip to main content

An Orientation Measurement Method for Industrial Robots Based on Laser Tracker

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14275))

Included in the following conference series:

  • 451 Accesses

Abstract

The end-effector pose accuracy of industrial robots is an important factor influencing their work performance. At present, laser tracker is one of the most popular instruments for position measurement of industrial robots. However, it is more difficult for orientation measurement. Considering the importance of robot’s orientation accuracy, this paper presents an orientation measurement method for industrial robots based on laser tracker. Firstly, an additional device with only one spherically mounted reflector (SMR), which has automatic movement function, is designed to measure the orientation of the robot’s end-effector. The mounting parameters can be obtained based on the spatial geometric invariance, combining the Lie group theory and the least squares method. And then the orientation information can be calculated by multiplying the rotation transformation matrix. An orientation measurement and compensation experiment was conducted on a 6-DOF industrial robot. It was found that the presented method can reduce the human errors made by manual operation and improve the measurement accuracy and efficiency, and it is simpler and easier to operate without establishing the base coordinate system. The experiment results showed that the mean orientation accuracy of robot’s end-effector was increased by more than 86.11% after compensation. Therefore, the orientation measurement method presented in this study is sensible and efficient, and could be used for the error compensation of robots to improve their accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, Z.R., Tang, X.W., et al.: High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends. Chin. J. Aeronaut. 35(2), 22–46 (2022)

    Article  Google Scholar 

  2. Sun, T., Liu, C., Lian, B., Wang, P., Song, Y.: Calibration for precision kinematic control of an articulated serial robot. IEEE Trans. Ind. Electron. 68(7), 6000–6009 (2020)

    Article  Google Scholar 

  3. He, D., Shi, F., Tan, S., Deng, Q.: Research on Inverse kinematics algorithm of 6-DOF industrial robot based on RBF-PID. J. Phys. Conf. Ser. 1624(4), 042017 (2020)

    Article  Google Scholar 

  4. Ma, L., Bazzoli, P., Sammons, P.M., Landers, R.G., Bristow, D.A.: Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Rob. Comput.-Integr. Manuf. 50, 153–167 (2018)

    Article  Google Scholar 

  5. Zhang, Y., Zhang, L.: Improving absolute position accuracy method analysis of machining robots by optimizing the posture. In: 8th International Conference on Education, Management, Computer and Society, Shenyang, China, pp. 524–526 (2018)

    Google Scholar 

  6. Chen, X., Zhang, Q., Sun, Y.: Non-kinematic calibration of industrial robots using a rigid–flexible coupling error model and a full pose measurement method. Rob. Comput.-Integr. Manuf. 57, 46–58 (2019)

    Article  Google Scholar 

  7. Le, P.-N., Kang, H.-J.: A new robotic manipulator calibration method of identification kinematic and compliance errors. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020. LNCS (LNAI), vol. 12465, pp. 16–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_2

  8. Liu, H., Zhu, W., Dong, H., Ke, Y.: An improved kinematic model for serial robot calibration based on local POE formula using position measurement. Ind. Rob. Int. J. 45(5), 573–584 (2018)

    Article  Google Scholar 

  9. Sun, T., Lian, B., Yang, S., Song, Y.: Kinematic calibration of serial and parallel robots based on finite and instantaneous screw theory. IEEE Trans. Rob. 36(3), 816–834 (2020)

    Article  Google Scholar 

  10. Li, C., Wu, Y., Lowe, H., Li, Z.: POE-based robot kinematic calibration using axis configuration space and the adjoint error model. IEEE Trans. Rob. 32(5), 1264–1279 (2016)

    Article  Google Scholar 

  11. Li, G., Zhang, F., Fu, Y., Wang, S.: Kinematic calibration of serial robot using dual quaternions. Ind. Rob. Int. J. Rob. Res. Appl. 46(2), 247–258 (2019)

    Article  Google Scholar 

  12. Chen, Z.W., Zu, H.F., Hong, W., Meng, C.T.: Robot pose accuracy test method based on multi-base station laser tracker. Metrol. Meas. Technol. 41(01), 10–16 (2021). (in Chinese)

    Google Scholar 

  13. Liu, W.L., Li, Y.W.: A novel method for improving the accuracy of coordinate transformation in multiple measurement systems. Meas. Sci. Technol. 28(9), 095002 (2017)

    Article  Google Scholar 

  14. Nubiola, A., Bonev, I.A.: Absolute calibration of an ABB IRB 1600 robot using a laser tracker. Rob. Comput.-Integr. Manuf. 29(1), 236–245 (2013)

    Article  Google Scholar 

  15. Niku, S.B.: Introduction to Robotics: Analysis, Control, Applications, 1st edn. John Wiley & Sons, New York (2020)

    Google Scholar 

  16. Park, F.C., Martin, B.J.: Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Trans. Rob. Autom. 10(5), 717–721 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of Guangzhou (No. 202201010072), the Higher Education Teaching Research and Reform Project of Guangdong Province (No. x2jq-C9213027), the National Natural Science Foundation of China (No. 51805172), and the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenya He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Zheng, H., Yuan, H., Zhang, X. (2023). An Orientation Measurement Method for Industrial Robots Based on Laser Tracker. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14275. Springer, Singapore. https://doi.org/10.1007/978-981-99-6504-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6504-5_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6503-8

  • Online ISBN: 978-981-99-6504-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics