Skip to main content

A Survey: Classifying and Predicting Features Based on Facial Analysis

  • Conference paper
  • First Online:
Evolution in Computational Intelligence (FICTA 2023)

Abstract

The facial features of a human being are to deliver their opinions and intentions. The human face consists of unique features (like eyes, nose, cheeks, eyebrows, and the rest) that make a person vary from another individual for identification. This paper correlates and analyzes various facial features like gender, age, and emotion. Human emotion analysis considered for estimation till now are fear, happiness, surprise, sadness, neutrality, anger, and contempt. The analysis of gender detection, age estimation, and facial expression recognition obtain via an image, video clip, or real-time detection like a webcam. The facial analysis consists of numerous authentic applications such as human–computer interaction, biometrics, electronics, surveillance, personality development, and cosmetology. This paper allocates several procedures of the facial estimation analysis process and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abirami, B., Subashini, T.S., Mahavaishnavi, V.: Gender and age prediction from real time facial images using CNN. Mater. Today Proc. 33, 4708–4712 (2020)

    Article  Google Scholar 

  2. Agbo-Ajala, O., Viriri, S.: Deeply learned classifiers for age and gender predictions of unfiltered faces. Sci. World J. 2020 (2020)

    Google Scholar 

  3. Al Mashagba, E.F.: Real-time gender classification by face. Int. J. Adv. Comput. Sci. Appl. 7(3) (2016)

    Google Scholar 

  4. Ali, H., et al.: Facial emotion recognition using empirical mode decomposition. Expert Syst. Appl. 42(3), 1261–1277 (2015)

    Google Scholar 

  5. Alreshidi, A., Ullah, M.: Facial emotion recognition using hybrid features. In: Informatics, vol. 7. no. 1. Multidisciplinary Digital Publishing Institute (2020)

    Google Scholar 

  6. Antipov, G., et al.: Effective training of convolutional neural networks for face-based gender and age prediction. Pattern Recogn. 72, 15–26 (2017)

    Google Scholar 

  7. Arora, M., Kumar, M.: AutoFER: PCA and PSO based automatic facial emotion recognition. Multimedia Tools Appl. 80(2), 3039–3049 (2021)

    Article  Google Scholar 

  8. Aslam, T., et al.: Emotion based facial expression detection using machine learning. Life Sci. J. 17(8), 35–43 (2020)

    Google Scholar 

  9. Bellamkonda, S., Gopalan, N.P.: A facial expression recognition model using support vector machines. IJ Math. Sci. Comput. 4, 56–65 (2018)

    Google Scholar 

  10. Bhaskar, N., Ganashree, T.S., Patra, T.S.: Pulmonary lung nodule detection and classification through image enhancement and deep learning. Int. J. Biom. 1(1), 1 (2023). https://doi.org/10.1504/IJBM.2023.10044525

  11. Bukar, A.M., Ugail, H., Connah, D.: Automatic age and gender classification using supervised appearance model. J. Electron. Imaging 25(6), 061605 (2016)

    Google Scholar 

  12. Chang, J.K., Ryoo, S.T.: Implementation of an improved facial emotion retrieval method in multimedia system. Multimedia Tools Appl. 77(4), 5059–5065 (2018)

    Article  Google Scholar 

  13. Dagher, I., Dahdah, E., Al Shakik, M.: Facial expression recognition using three-stage support vector machines. Visual Comput. Indus. Biomed. Art 2(1), 1–9 (2019)

    Google Scholar 

  14. Doma, V., Pirouz, M.: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals. J. Big Data 7(1), 1–21 (2020)

    Article  Google Scholar 

  15. Duan, M., et al.: A hybrid deep learning CNN–ELM for age and gender classification. Neurocomputing 275, 448–461 (2018)

    Google Scholar 

  16. Fang, J., et al.: Muti-stage learning for gender and age prediction. Neurocomputing 334, 114–124 (2019)

    Google Scholar 

  17. Ghimire, D., et al.: Facial expression recognition based on local region specific features and support vector machines. Multimedia Tools Appl. 76(6), 7803–7821 (2017)

    Google Scholar 

  18. Guehairia, O., et al.: Feature fusion via deep random forest for facial age estimation. Neural Netw. 130, 238–252 (2020)

    Article  Google Scholar 

  19. Hassouneh, A., Mutawa, A.M., Murugappan, M.: Development of a real-time emotion recognition system using facial expressions and EEG based on machine learning and deep neural network methods. Inform. Med. Unlocked 20, 100372 (2020)

    Google Scholar 

  20. Kaushik, P., et al.: EEG-based age and gender prediction using deep BLSTM-LSTM network model. IEEE Sens. J. 19(7), 2634–2641 (2018)

    Google Scholar 

  21. Khan, K., et al.: A unified framework for head pose, age and gender classification through end-to-end face segmentation. Entropy 21(7), 647 (2019)

    Google Scholar 

  22. Khan, K., et al.: Automatic gender classification through face segmentation. Symmetry 11(6), 770 (2019)

    Google Scholar 

  23. Kumar, S., et al.: Exploring impact of age and gender on sentiment analysis using machine learning. Electronics 9(2), 374 (2020)

    Google Scholar 

  24. Morampudi, M.K., Gonthina, N., Bhaskar, N., Dinesh Reddy, V.: Image description generator using residual neural network and long short-term memory. Comput. Sci. J. Moldova 31(1(91)), 3–21 (2023). https://doi.org/10.56415/csjm.v31.01

  25. Perveen, N., et al.: Facial expression recognition through machine learning. Int. J. Sci. Technol. Res. 5(03) (2016)

    Google Scholar 

  26. Rößler, J., Sun, J., Gloor, P.: Reducing videoconferencing fatigue through facial emotion recognition. Future Internet 13(5), 126 (2021)

    Article  Google Scholar 

  27. Salido Ortega, M.G., Rodríguez, L.F., Gutierrez-Garcia, J.O.: Towards emotion recognition from contextual information using machine learning. J. Ambient Intell. Hum. Comput. 11(8), 3187–3207 (2020)

    Google Scholar 

  28. Singh, A., et al.: Age, gender prediction and emotion recognition using convolutional neural network. Available at SSRN 3833759 (2021)

    Google Scholar 

  29. Tsai, H.-H., Chang, Y.-C.: Facial expression recognition using a combination of multiple facial features and support vector machine. Soft Comput. 22(13), 4389–4405 (2018)

    Article  Google Scholar 

  30. Wang, S., Tao, D., Yang, J.: Relative attribute SVM+ learning for age estimation. IEEE Trans. Cybern. 46(3), 827–839 (2015)

    Article  Google Scholar 

  31. Wang, F., et al.: Facial expression recognition from image based on hybrid features understanding. J. Vis. Commun. Image Representation 59, 84–88 (2019)

    Google Scholar 

  32. Wanga, G., Davies, S.R.: Deep machine learning for age and gender prediction. ICTACT J. Soft Comput. (2019)

    Google Scholar 

  33. Yuan, Z.: Face detection and recognition based on visual attention mechanism guidance model in unrestricted posture. Sci. Programm. 2020 (2020)

    Google Scholar 

  34. Zaghbani, S., Noureddine B., Bouhlel, M.S.: Age estimation using deep learning. Comput. Electr. Eng. 68, 337–347 (2018)

    Google Scholar 

  35. http://whdeng.cn/RAF/model1.html

  36. https://areeweb.polito.it/ricerca/cgvg/siblingsDB.html

  37. https://bml.ym.edu.tw/tfeid/

  38. https://computervisiononline.com/dataset/1105138612

  39. https://cvhci.anthropomatik.kit.edu/433_451.php

  40. https://data.fei.org/Default.aspx

  41. https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

  42. https://mmifacedb.eu/

  43. https://paperswithcode.com/dataset/adience

  44. https://paperswithcode.com/dataset/fg-net

  45. https://paperswithcode.com/dataset/morph

  46. https://rafd.socsci.ru.nl/RaFD2/RaFD?p=main

  47. https://researchdata.edu.au/static-facial-expressions-wild-sfew/2729

  48. https://uncw.edu/oic/tech/morph_academic.html

  49. https://vis-www.cs.umass.edu/lfw/

  50. https://www.dartmouth.edu/oir/data-reporting/cds/index.html

  51. https://www.jeffcohn.net/Resources/

  52. https://www.kaggle.com/datasets/msambare/fer2013

  53. https://zenodo.org/record/3451524#.Y_xDD3ZBzIU

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuthanakanti Bhaskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tejaashwini Goud, J., Bhaskar, N., Kumar, V.N., Mubeen, S., Narasimharao, J., Unnisa, R. (2023). A Survey: Classifying and Predicting Features Based on Facial Analysis. In: Bhateja, V., Yang, XS., Ferreira, M.C., Sengar, S.S., Travieso-Gonzalez, C.M. (eds) Evolution in Computational Intelligence. FICTA 2023. Smart Innovation, Systems and Technologies, vol 370. Springer, Singapore. https://doi.org/10.1007/978-981-99-6702-5_25

Download citation

Publish with us

Policies and ethics