Skip to main content

Ensemble Model for Lidar Data Analysis and Nocturnal Boundary Layer Height Estimation

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)

Abstract

The atmosphere of Earth is divided into five distinct layers, each with its own characteristics. Each layer has its own unique characteristics and plays a vital role in protecting life on Earth. The lowest part of the atmosphere on Earth is called the troposphere. One of its key characteristics is the nocturnal boundary layer (NBL), which plays a major role in the formation of clouds and precipitation patterns. The NBL layer characteristics change over time due to seasonal changes and other local influences; hence, they are important specially to understand the impact of the dispersion of pollutants in a growing industrial region. This paper presents the analysis of various research works carried out in the field of Lidar system analysis, study on nocturnal boundary layer, intercomparison of various methods for analysis and estimation of nocturnal boundary layer height and the study on ensemble technique for optimal estimation of NBL height. The experimental results showed that proposed ensemble method is more effective in computing optimal nocturnal boundary layer height than the analytical and signal processing methods when used individually to compute NBL height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raj, T., Hanim Hashim, F., Baseri Huddin, A., Ibrahim, M.F., Hussain, A.: A survey on LiDAR scanning mechanisms. Electronics 9(5), 741 (2020)

    Article  Google Scholar 

  2. Roriz, R., Cabral, J., Gomes, T.: Automotive LiDAR technology: a survey. IEEE Trans. Intell. Transp. Syst. 23(7), 6282–6297 (2021)

    Article  Google Scholar 

  3. Dang, R., Yang, Y., Hu, X.M., Wang, Z., Zhang, S.: A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data. Remote Sens. 11(13), 1590 (2019)

    Article  Google Scholar 

  4. Kokkalis, P., Alexiou, D., Papayannis, A., Rocadenbosch, F., Soupiona, O., Raptis, P.I., Mylonaki, M., Tzanis, C.G., Christodoulakis, J.: Application and testing of the extended-Kalman-filtering technique for determining the planetary boundary-layer height over Athens, Greece. Bound.-Layer Meteorol. 176, 125–147 (2020)

    Article  Google Scholar 

  5. de Arruda Moreira, G., Sánchez-Hernández, G., Guerrero-Rascado, J.L., Cazorla, A., Alados-Arboledas, L.: Estimating the urban atmospheric boundary layer height from remote sensing applying machine learning techniques. Atmos. Res. 266, 105962 (2022)

    Article  Google Scholar 

  6. Kotthaus, S., Haeffelin, M., Drouin, M.A., Dupont, J.C., Grimmond, S., Haefele, A., Hervo, M., Poltera, Y., Wiegner, M.: Tailored algorithms for the detection of the atmospheric boundary layer height from common automatic lidars and ceilometers (ALC). Remote Sens. 12(19), 3259 (2020)

    Article  Google Scholar 

  7. Dang, R., Qiu, X., Yang, Y., Zhang, S.: Observation system simulation experiments (OSSEs) for assimilation of the planetary boundary-layer height (PBLH) using the EnSRF technique. Q. J. R. Meteorol. Soc. 148(744), 1184–1207 (2022)

    Article  Google Scholar 

  8. Lee, H.J., Jo, H.Y., Kim, J.M., Bak, J., Park, M.S., Kim, J.K., Jo, Y.J., Kim, C.H.: Nocturnal boundary layer height uncertainty in particulate matter simulations during the KORUS-AQ campaign. Remote Sens. 15(2), 300 (2023)

    Article  Google Scholar 

  9. Ali, M.A., Hassoon, A.F.: Effect of daytime and nocturnal boundary layers height on some pollutant gases profile over Baghdad city, Iraq. Plant Arch. 20, 2624–2630 (2020)

    Google Scholar 

  10. Boyko, V., Vercauteren, N.: Multiscale shear forcing of turbulence in the nocturnal boundary layer: a statistical analysis. Bound.-Layer Meteorol. 179(1), 43–72 (2021)

    Article  Google Scholar 

  11. Krishnamurthy, R., Newsom, R.K., Berg, L.K., Xiao, H., Ma, P.L., Turner, D.D.: On the estimation of boundary layer heights: a machine learning approach. Atmos. Meas. Tech. 14(6), 4403–4424 (2021)

    Article  Google Scholar 

  12. Dong, P., Chen, Q.: LiDAR Remote Sensing and Applications. CRC Press (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurram Sunitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sunitha, G., Reddy Madhavi, K., Avanija, J., Srujan Raju, K., Kirankumar, A., Raji Reddy, A. (2023). Ensemble Model for Lidar Data Analysis and Nocturnal Boundary Layer Height Estimation. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore. https://doi.org/10.1007/978-981-99-6706-3_28

Download citation

Publish with us

Policies and ethics