Skip to main content

Classical and Parameterized Complexity of Line Segment Covering Problems in Arrangement

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 371))

  • 121 Accesses

Abstract

Given a line segment arrangement, defined as the geometric structure induced by a set of n line segments in a plane, we study the complexity of two covering problems—Cell Cover for Segments and Guarding a Set of Segments. In Cell Cover for Segments (CCS) problem, the input is a line segment arrangement and our aim is to cover all the segments with minimum number of cells. We prove that the decision version of CCS is NP-complete. Guarding a Set of Segments (GSS) Problem asks to cover all the line segments with minimum number of points in the arrangement. The decision version of GSS problem is known to be NP-complete [4]. Given k as the solution size, we prove that the GSS problem admits a kernel of \(\mathcal {O}(k^{2})\) line segments and provide an \(\mathcal {O^*}(k^{2k})\) FPT algorithm for solving GSS. We model the arrangement as its underlying planar graph which allows us to define a structural parameter called face density (d) of the arrangement, and propose an \(\mathcal {O^*}(d^{k})\) FPT algorithm for the GSS problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bondy, A., Murty, U.: Planar Graphs, Graph Theory, Graduate Texts in Mathematics, 244, Theorem 10.28, p. 267. Springer, Berlin (2008)

    Google Scholar 

  2. Bose, P., Cardinal, J., Collette, S., Hurtado, F., Korman, M., Langerman, S., Taslakian, P.: Coloring and guarding line arrangements. Discrete Math. Theor. Comput0 Sci. 15(3), 139–154 (2013)

    MATH  Google Scholar 

  3. Brass, P.: Geometric problems on coverage in sensor networks. In: Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds.) Geometry—Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol. 24, pp. 91–108. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  4. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Guarding a set of line segments in the plane. Theor. Comput. Sci. 412, 1313–1324 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brimkov, V.E., Leach, A., Wub, J., Mastroianni, M.: Approximation algorithms for a geometric set cover problem. Discrete Appl. Math. 160, 1039–1052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw-Hill Science/Engineering/Math, 2 edn. (2001)

    Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer, Berlin (2015)

    Google Scholar 

  8. Das, G., Goodrich, M.T.: On the complexity of approximating and illuminating three-dimensional convex polyhedra. In: Proceeding of the 4th Workshop Algorithms Dara Structure, Lecture Notes in Computer Science. Springer, Berlin (1995)

    Google Scholar 

  9. Estivill-Castro, V., Heednacram, A., Suraweera, F.: Np-completeness and fpt results for rectilinear covering problems. J. Univers. Comput. Sci. 16(5), 622–652 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Fáry, I.: On straight line representation of planar graphs. Acta. Sci. Math. (Szeged) 11, 229–233 (1948)

    MathSciNet  MATH  Google Scholar 

  11. Gavrilova, M.L.: Computational geometry methods and intelligent computing. In: Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence. vol. 158, pp. 3–10. Springer, Berlin (2008)

    Google Scholar 

  12. Hochbaum, D., Maass, W.: Approximation schemes for covering and packing problems in image processing and vlsi. In: STACS 84: Symposium of Theoretical Aspects of Computer Science, pp. 55–62. Paris (1984)

    Google Scholar 

  13. Joshi, A., Narayanaswamy, N.S.: Approximation algorithms for hitting triangle-free sets of line segments. In: Algorithm Theory SWAT 2014. Lecture Notes in Computer Science. vol. 8503, pp. 357–367 (2014)

    Google Scholar 

  14. Das, G.K., Roy, S., Das, S., Nandy, S.C.: Variations of base station placement problem on the boundary of a convex region. Int. J. Found. Comput. Sci. 19(2), 405–427 (2008)

    Google Scholar 

  15. Korman, M., Poon, S.H., Roeloffzen, M.: Line segment covering of cells in arrangements. Inf. Process. Lett. 129, 25–30 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lapinskaitė, I., Kuckailytė, J.: The impact of supply chain cost on the price of the final product. Bus. Manage. Educ. 12, 109–126 (2014)

    Article  Google Scholar 

  17. Tanimoto, S.L., Fowler, R.J.: Covering image subsets with patches. In: Proceedings of the 5th International Conference on Pattern Recognition, vol. 2, pp. 835–839. MiamiBeach, Florida, USA (1980)

    Google Scholar 

  18. Whitney, H.: 2-isomorphic graphs. Amer. J. Math. pp. 245–254 (1933)

    Google Scholar 

  19. Yang, D., Misra, S., Fang, X., Xue, G., Zhang, J.: Two-tiered constrained relay node placement in wireless sensor networks: computational complexity and efficient approximations. IEEE Trans. Mob. Comput. 11(8), 1399–1411 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rema .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rema, M., Subashini, R., Methirumangalath, S., Rajan, V. (2023). Classical and Parameterized Complexity of Line Segment Covering Problems in Arrangement. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore. https://doi.org/10.1007/978-981-99-6706-3_29

Download citation

Publish with us

Policies and ethics