Skip to main content

Prediction of Sepsis Disease Using Random Search to Optimize Hyperparameter Tuning Based on Lazy Predict Model

  • Conference paper
  • First Online:
Intelligent Data Engineering and Analytics (FICTA 2023)

Abstract

Sepsis is a severe infection-related host response that is linked with high mortality, morbidity and healthcare expenditures. Its treatment must be done quickly since each hour of delay increases death owing to irreparable organ damage. In the meantime, notwithstanding decades of clinical study, there are no reliable biomarkers for sepsis. As a result, early detection of sepsis using the abundance of high-resolution intensive care data has become a difficult task. There are also certain machine learning (ML) grounded models that could cut death rates, although their accuracy isn't always reliable. This research offers a lazy predict (LP) model of ML algorithm for identifying and forecasting sepsis in intensive care unit (ICU) patients. LP model is one of the finest Python packages for semi-automating ML tasks. It generates a large number of basic models with little code and aids in determining which models function best without any parameter adjusting. This study describes various models such as XGB classifier, LGBM classifier, extra tree classifier, random forest classifier, bagging classifier and decision tree classifier are based on vital signs and clinical laboratory results and are simulated using information taken from an intensive care unit patient's database. Then, after getting evaluation of all the models, XGB classifier attains higher accuracy of 0.98 which is the best fit to use the LP library compare to other ML model. Moreover, this empirical study proposed hyperparameter tuning based on random search is applied to XGB classifier used to train a model. To overcome the classification challenge, this research work introduces a Lazy Classifier. Hence, the best score across all searched parameters using random search to optimize hyperparameter tuning which attains 0.99 for lazy predict with XGB algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M, et al.: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8), 801–810, 23 Feb 2016. [FREE Full text] [https://doi.org/10.1001/jama.2016.0287] [Medline: 26903338]

  2. Rhee, C., Dantes, R., Epstein, L., Murphy, D.J., Seymour, C.W., Iwashyna, T.J.: CDC Prevention Epicenter Program. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA 318(13), 1241–1249, 03 Oct 2017. [FREE Full text] [https://doi.org/10.1001/jama.2017.13836] [Medline: 28903154]

  3. Sakr, Y., Jaschinski, U., Wittebole, X., Szakmany, T., Lipman, J., Ñamendys-Silva, S.A.: ICON Investigators. Sepsis in intensive care unit patients: worldwide data from the intensive care over nations audit. Open Forum Infect. Dis. 5(12), ofy313 Dec 2018. [FREE Full text] [https://doi.org/10.1093/ofid/ofy313] [Medline: 30555852]

  4. Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al.: Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395(10219), 200–211, 18 Jan 2020. [FREE Full text] [https://doi.org/10.1016/S0140-6736(19)32989-7] [Medline: 31954465]

  5. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., et al.: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395(10229), 1054–1062, 28 Mar 2020. [https://doi.org/10.1016/S0140-6736(20)30566-3] [Medline: 32171076]

  6. Kumar, A., Roberts, D., Wood, K.E., Light, B., Parrillo, J.E., Sharma, S., et al.: Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34(6), 1589–1596, Jun 2006. [https://doi.org/10.1097/01.CCM.0000217961.75225.E9] [Medline: 16625125]

  7. Mok, K., Christian, M.D., Nelson, S., Burry L. Time to administration of antibiotics among inpatients with severe sepsis or septic shock. Can. J. Hosp. Pharm. 67(3), 213–219, May 2014. [FREE Full text] [https://doi.org/10.4212/cjhp.v67i3.1358] [Medline: 24970941]

  8. Husabø, G., Nilsen, R.M., Flaatten, H., Solligård, E., Frich, J.C., Bondevik, G.T., et al.: Early diagnosis of sepsis in emergency departments, time to treatment, and association with mortality: an observational study. PLoS One 15(1), e0227652 (2020). [FREE Full text] [https://doi.org/10.1371/journal.pone.0227652] [Medline: 31968009]

  9. Seymour, C.W., Gesten, F., Prescott, H.C., Friedrich, M.E., Iwashyna, T.J., Phillips, G.S., et al.: Time to treatment and mortality during mandated emergency care for sepsis. N. Engl. J. Med. 376(23), 2235–2244 (2017). https://doi.org/10.1056/nejmoa1703058

    Article  Google Scholar 

  10. Ferrer, R., Martin-Loeches, I., Phillips, G., Osborn, T.M., Townsend, S., Dellinger, R.P., et al.: Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit. Care Med. 42(8), 1749–1755, Aug (2014). [https://doi.org/10.1097/CCM.0000000000000330] [Medline: 24717459]

  11. Rhodes, A., Evans, L.E., Alhazzani, W., Levy, M.M., Antonelli, M., Ferrer, R., et al.: Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit. Care Med. 45(3), 486–552 Mar 2017. [https://doi.org/10.1097/CCM.0000000000002255] [Medline: 28098591]

  12. Pierrakos, C., Vincent, J.: Sepsis biomarkers: a review. Crit. Care 14(1), R15 (2010) [FREE Full text] [https://doi.org/10.1186/cc8872] [Medline: 20144219]

  13. Cho, S., Choi, J.: Biomarkers of sepsis. Infect. Chemother. 46(1), 1–12, Mar 2014. [FREE Full text] [https://doi.org/10.3947/ic.2014.46.1.1] [Medline: 24693464]

  14. Pierrakos, C., Velissaris, D., Bisdorff, M., Marshall, J.C., Vincent, J.: Biomarkers of sepsis: time for a reappraisal. Crit. Care 24(1), 287, 05 Jun 2020. [FREE Full text] [https://doi.org/10.1186/s13054-020-02993-5] [Medline: 32503670]

  15. Singh, Y.V., Singh, P., Khan, S., Singh, R.S.: A ML model for early prediction and detection of sepsis in intensive care unit patients. Hindawi J. Healthc. Eng. 11 (2022), Article ID 9263391. https://doi.org/10.1155/2022/9263391

  16. Kuo, Y.-Y., Huang, S.-T., Chiu, H.-W.: Applying artificial neural network for early detection of sepsis with intentionally preserved highly missing real-world data for simulating clinical situation. BMC Med. Inf. Decis. Making 21(1), 290 (2021)

    Google Scholar 

  17. Zhang, D., Yin, C. Hunold, K. M., Jiang, X. Caterino, J. M., Zhang, P.: An interpretable deep-learning model for early prediction of Sepsis in the emergency department. Patterns 2(2) (2021), Article ID 100196

    Google Scholar 

  18. Kok, C., Jahmunah, V., Oh S.L. et al.: Automated prediction of sepsis using temporal convolutional network. Comput. Biol. Med. 127 (2020), Article ID 103957

    Google Scholar 

  19. Chaudhary, P. Gupta, D.K., Singh, S.: Outcome prediction of patients for different stages of sepsis using ML models. In: Advances in Communication and Computational Technology. Lecture Notes in Electrical Engineering, vol. 668, Springer, Singapore (2021)

    Google Scholar 

  20. Mitra, A., Ashraf, K.: Sepsis prediction and vital signs ranking in intensive care unit patients. Clin. Orthop. Relat. Res. 1812, 1–10 (2019), Article ID 06686

    Google Scholar 

  21. Desautels, T., Calvert, J., Hoffman, J. et al.: Prediction of sepsis in the intensive care unit with minimal electronic health record data: a ML approach. JMIR Med. Inform. 4(3), e28 (2016), Article ID 27694098

    Google Scholar 

  22. Onan, A. Koruko˘glu, S., Bulut, H.: Ensemble of keyword extraction methods and classifiers in text classification. Expert Syst. Appl. 57, 232–247 (2016)

    Google Scholar 

  23. Onan, A., Korukoglu, S.: A feature selection model based ˘ on genetic rank aggregation for text sentiment classification. J. Inf. Sci. 43(1), 25–38 (2017)

    Article  Google Scholar 

  24. Onan, A.: Classifier and feature set ensembles for web page classification. J. Inf. Sci. 42 (2), 150–165 (2016)

    Google Scholar 

  25. Zhang, Z., Chen, L. Xu, P., Hong, Y.: Predictive analytics with ensemble modeling in laparoscopic surgery: a technical note. Laparoscopic, Endoscopic Rob. Surg. 5, (2022)

    Google Scholar 

  26. Kim, J.K., Ahn, W., Park, S., Lee, S. -H., Kim, L.: Early prediction of sepsis onset using neural architecture search based on genetic algorithms. Int. J. Environ. Res. Publ. Health, 19, 2349 (2022). https://doi.org/10.3390/ijerph19042349

  27. Kaya, U., Yilmaz, A., Dikmen, Y.: Prediction of sepsis disease by artificial neural networks. J. Selcuk-Technic Spec. Issue 2018 (ICENTE'18)

    Google Scholar 

  28. Fleuren LM, Klausch TLT, Zwager CL, Schoonmade LJ, Guo T, Roggeveen LF, et al. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med 2020 Mar;46(3):383–400 [FREE Full text] [doi: https://doi.org/10.1007/s00134-019-05872-y]

  29. Moor, M., Rieck, B., Horn, M., Jutzeler, C.R., Borgwardt, K.: Early prediction of sepsis in the ICU using machine learning: a systematic review. Front Med (Lausanne) 8, 607952 (2021) [FREE Full text] [https://doi.org/10.3389/fmed.2021.607952] [Medline: 34124082]

  30. Desautels, T., Calvert, J., Hoffman, J., Jay, M., Kerem, Y., Shieh, L., et al.: Prediction of sepsis in the intensive care unit with minimal electronic health record data: a machine learning approach. JMIR. Med. Inform. 4(3), e28, 30 Sep 2016. [FREE Full text] [https://doi.org/10.2196/medinform.5909] [Medline: 27694098]

  31. Shimabukuro, D.W., Barton, C.W., Feldman, M.D., Mataraso, S.J., Das, R.: Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respir. Res. 4(1), e000234 (2017). [FREE Full text] [https://doi.org/10.1136/bmjresp-2017-000234]

  32. Nemati, S., Holder, A., Razmi, F., Stanley, M.D., Clifford, G.D., Buchman, T.G.: An interpretable machine learning model for accurate prediction of sepsis in the ICU. Crit. Care Med. 46(4), 547–553, Apr 2018. [https://doi.org/10.1097/CCM.0000000000002936] [Medline: 29286945]

  33. Ghias, N., Ul Haq, S., Arshas, H., Sultan, H., Bashir, F., Ghaznavi, S.A., Shabbir, M., Badshah, Y., Rafiq, M.: Using ML algorithms to predict sepsis and its stages in ICU patients. 2022. medRxiv preprint. https://doi.org/10.1101/2022.03.15.22271655

  34. Kanaga Suba Raja, S., Valarmathi, K., Deepthi Sri, S., Harishita, S., Keerthanna,V.: Sepsis prediction using ensemble random forest. AIP Conf. Proc. 2405, 030027 (2022). https://doi.org/10.1063/5.0072499

  35. Gunnarsdottir, K., Sadashivaiah, V., Kerr, M., Santaniello, S., Sarma, S.V.: Using demographic and time series physiological features to classify sepsis in the intensive care unit. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 778–782. Orlando, FL (2016)

    Google Scholar 

  36. Fleuren, L.M., Klausch, T.L.T., Zwager, C.L., Schoonmade, L.J., Guo, T., Roggeveen, L.F., Swart, E.L., Girbes, A.R.J., Thoral, P., Ercole, A., Hoogendoorn, M., Elbers, P.W.G..: ML for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy. Intensive Care Med. 46, 383–400 (2020). https://doi.org/10.1007/s00134-019-05872-y

  37. Liu, R., Greenstein, J.L., Sarma, S.V., Winslow, R.L.: Natural language processing of clinical notes for improved early prediction of septic shock in the ICU. In: Proceeding of the 41st annual international conference of the IEEE engineering in medicine and biology society, pp. 6103–6108 (2019)

    Google Scholar 

  38. Carnielli, C.M., et al.: Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat. Commun. 9, 3598 (2018)

    Article  Google Scholar 

  39. Xia, B., et al.: Machine learning uncovers cell identity regulator by histone code. Nat. Commun. 11, 2696 (2020)

    Article  Google Scholar 

  40. Rennie, S., Dalby, M., van Duin, L., Andersson, R.: Transcriptional decomposition reveals active chromatin architectures and cell specific regulatory interactions. Nat. Commun. 9, 487 (2018)

    Article  Google Scholar 

  41. Nakhashi, M., Toffy, A., Achuth, P.V., Palanichamy, L., C.M., Vikas, C.M.: Early prediction of sepsis: using state of-the-art ML techniques on vital sign inputs. Comput. Cardiol. Conf. 2019

    Google Scholar 

  42. Yao, R.-Q., Jin, X., Wang, G.-W., Yu, Y., Wu, G.-S., Zhu, Y.-B., Li, L., Li, Y.-X., Zhao, P.-Y., Zhu, S.-Y., et al.: A machine learning-based prediction of hospital mortality in patients with postoperative sepsis. Front. Med. 7, 445 (2020)

    Article  Google Scholar 

  43. Taylor, R.A., Pare, J.R., Venkatesh, A.K., Mowafi, H., Melnick, E.R., Fleischman, W., Hall, M.K.: Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data–driven, machine learning approach. Acad. Emerg. Med. 23(3), 269–278 (2016)

    Article  Google Scholar 

  44. T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting system,” Clinical Orthopaedics and Related Research, vol. 1603, pp. 785–794, Article ID 02754, 2016.

    Google Scholar 

  45. Freund, Y., Schapire, R.E.: A short introduction to boosting. J. Japan. Soc. Artif. Intell. 14(5), 771–780 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Laxmi Lydia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lydia, E.L., Althubiti, S.A., Anupama, C.S.S., Kumar, K.V. (2023). Prediction of Sepsis Disease Using Random Search to Optimize Hyperparameter Tuning Based on Lazy Predict Model. In: Bhateja, V., Carroll, F., Tavares, J.M.R.S., Sengar, S.S., Peer, P. (eds) Intelligent Data Engineering and Analytics. FICTA 2023. Smart Innovation, Systems and Technologies, vol 371. Springer, Singapore. https://doi.org/10.1007/978-981-99-6706-3_31

Download citation

Publish with us

Policies and ethics